The role of FAIR principles in high-quality research data documentation: Looking at national election studies

Authors

DOI:

https://doi.org/10.29173/iq1119

Keywords:

FAIR principles, Data documentation, Research data management, F-UJI test, Research transparency

Abstract

The FAIR principles as a framework for evaluating and improving open science and research data management have gained much attention over the last years. By defining a set of properties that indicates good practice for making data findable, accessible, interoperable, and reusable (FAIR), a quality measurement is created, which can be applied to diverse research outputs, including research data. There are some software tools available to help with the assessment, with the F-UJI tool being the most prominent of them. It uses a set of metrics which defines tests for each of the FAIR components, and it creates an overall assessment score.

The article examines differences between manually and automatically assessing FAIR principles, shows that there are significantly different results by using national election studies as examples. An evaluation of progress is done by comparing the automatically assessed FAIRness scores of the datasets from 2018 with those of 2024, showing that there is only a very slight yet not significant difference. Specific measures which have improved the FAIRness scores are described by the example of the Politbarometer 2022 dataset at the GESIS Data Archive. The article highlights the role of archives in securing a high level of data and metadata quality and technically sound implementation of the FAIR principles to help researchers benefit from getting the most of their valuable research data.

References

Akdeniz, E. and Zenk-Möltgen, W. (2017). ‘DDI-Lifecycle at the Data Archive: the Metadata Schema for Documentation in Different Software Tools’, GESIS Papers, 2017(18). https://doi.org/10.21241/SSOAR.52487

Alaterä, T., Kleemola, M., Ala-Lahti, H. and Jerlehag, B. (2022). D4.5 Report on completed FAIR data standard adoption and certifications of data repositories in the region. https://doi.org/10.5281/ZENODO.7303538

American Economic Association (2024). Data and code availability policy. https://www.aeaweb.org/journals/data/data-code-policy

Betancort Cabrera, N., Bongartz, E.C., Dörrenbächer, N., Goebel, J., Kaluza, H. and Siegers, P. (2020). White paper on implementing the FAIR principles for data in the social, behavioural, and economic eciences’, RatSWD Working Paper Series. https://doi.org/10.17620/02671.60

Bishop, B. W., & Hank, C. (2018). Measuring fair principles to inform fitness for use. International Journal of Digital Curation, 13(1), 35–46. https://doi.org/10.2218/ijdc.v13i1.630

Borgesius, F.Z., Gray, J. and Van Eechoud, M. (2016). Open data, privacy, and fair information principles: Towards a balancing framework’, Berkeley Technology Law Journal, 30(3), 2073-2131. https://doi.org/10.15779/Z389S18 .

Christensen, G.S., Freese, J. and Miguel, E. (2019). Transparent and reproducible social science research: How to do open science. University of California Press.

DA-RT (2015). ‘Data Access & Research Transparency’. https://www.dartstatement.org/about

Deutsche Gesellschaft für Soziologie (2019). ‘Bereitstellung und Nachnutzung von Forschungsdaten in der Soziologie’. https://soziologie.de/aktuell/stellungnahmen/news/bereitstellung-und-nachnutzung-von-forschungsdaten-in-der-soziologie

Devaraju, A., & Huber, R. (2021). An automated solution for measuring the progress toward FAIR research data. Patterns, 2(11), 100370. https://doi.org/10.1016/j.patter.2021.100370

Devaraju, A., Huber, R., Mokrane, M., Herterich, P., Cepinskas, L., de Vries, J., L’Hours, H., Davidson, J. and White, A. (2022). FAIRsFAIR Data Object Assessment Metrics. https://doi.org/10.5281/zenodo.6461229

Devaraju, A., Mokrane, M., Cepinskas, L., Huber, R., Herterich, P., De Vries, J., Akerman, V., L’Hours, H., Davidson, J., & Diepenbroek, M. (2021). From conceptualization to implementation: Fair assessment of research data objects. Data Science Journal, 20, 4. https://doi.org/10.5334/dsj-2021-004

Eder, C. and Jedinger, A. (2018). FAIR national election studies: How well are we doing? (GESIS SDN-10.7802-1761) [Data set]. GESIS. https://doi.org/10.7802/1761

Eder, C., & Jedinger, A. (2019). FAIR national election studies: How well are we doing? European Political Science, 18(4), 651–668. https://doi.org/10.1057/s41304-018-0194-3

Forschungsgruppe Wahlen, Mannheim (2023). Politbarometer 2022 (Cumulated Data Set). (GESIS, ZA7970; Version 1.0.0) [Data set]. GESIS. https://doi.org/10.4232/1.14103

Freese, J., & Peterson, D. (2017). Replication in social science. Annual Review of Sociology, 43(1), 147–165. https://doi.org/10.1146/annurev-soc-060116-053450

Gehlen, K. P., Höck, H., Fast, A., Heydebreck, D., Lammert, A., & Thiemann, H. (2022). Recommendations for discipline-specific fairness evaluation derived from applying an ensemble of evaluation tools. Data Science Journal, 21, 7. https://doi.org/10.5334/dsj-2022-007

Grossmann, I., Feinberg, M., Parker, D. C., Christakis, N. A., Tetlock, P. E., & Cunningham, W. A. (2023). AI and the transformation of social science research. Science, 380(6650), 1108–1109. https://doi.org/10.1126/science.adi1778

Guillot, P., Bøgsted, M., & Vesteghem, C. (2023). FAIR sharing of health data: A systematic review of applicable solutions. Health and Technology, 13(6), 869–882. https://doi.org/10.1007/s12553-023-00789-5

Hienert, D., Kern, D., Boland, K., Zapilko, B., & Mutschke, P. (2019). A digital library for research data and related information in the social sciences. 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), 148–157. https://doi.org/10.1109/JCDL.2019.00030

Jensen, U., Netscher, S. and Weller, K. (eds) (2019). Forschungsdatenmanagement sozialwissenschaftlicher Umfragedaten: Grundlagen und praktische Lösungen für den Umgang mit quantitativen Forschungsdaten. Verlag Barbara Budrich.

Key, E. M. (2016). How are we doing? Data access and replication in political science. Political Science and Politics, 49(2), 268–272. https://doi.org/10.1017/S1049096516000184

Kockum, F., & Dacre, N. (2021). Project management volume, velocity, variety: A big data dynamics approach. Advanced Project Management, 21(1). https://doi.org/10.2139/ssrn.3813838

Maxwell, L., Shreedhar, P., Dauga, D., McQuilton, P., Terry, R., Denisiuk, A., Molnar-Gabor, F., Saxena, A. and Sansone, S.-A. (2021). FAIR, ethical, and coordinated data sharing for COVID-19 response: a review of COVID-19 data sharing platforms and registries. https://doi.org/10.21203/rs.3.rs-1045632/v1

Merton, R.K. (1942). A note on science and democracy. Journal of Legal and Political Sociology, 1(1), 115–126.

Musen, M. A., O’Connor, M. J., Schultes, E., Martínez-Romero, M., Hardi, J., & Graybeal, J. (2022). Modeling community standards for metadata as templates makes data FAIR. Scientific Data, 9(1), 696. https://doi.org/10.1038/s41597-022-01815-3

Perry, A., & Netscher, S. (2022). Measuring the time spent on data curation. Journal of Documentation, 78(7), 282–304. https://doi.org/10.1108/JD-08-2021-0167

Perry, A., Watteler, O., Zenk-Möltgen, W. and Gregory, A. (2019, May 27-31). How can research projects benefit from standardized metadata Like DDI? [Conference presentation]. IASSIST 2019, Sydney, Australia. https://doi.org/10.5281/ZENODO.3612730

Petrosyan, L., Aleixandre-Benavent, R., Peset, F., Valderrama-Zurián, J. C., Ferrer-Sapena, A., & Sixto-Costoya, A. (2023). FAIR degree assessment in agriculture datasets using the F-UJI tool. Ecological Informatics, 76, 102126. https://doi.org/10.1016/j.ecoinf.2023.102126

Recker, J., Zenk-Möltgen, W., & Mauer, R. (2017). Applications of research data management at GESIS Data Archive for the Social Sciences. In J. B. Thestrup & F. Kruse (Eds.), Research Data Management—A European Perspective (pp. 119–146). De Gruyter. https://doi.org/10.1515/9783110365634-008

Saldanha Bach, J., Klas, C.-P., Mathiak, B., Yudong Zhang and Mutschke, P. (2023). FAIRness assessment: A comparison of the RDA model and the F-UJI Automated tool report. https://doi.org/10.5281/ZENODO.8308902

Schumann, N. and Mauer, R. (2013). The GESIS Data Archive for the Social Sciences: A widely recognised data archive on its way. International Journal of Digital Curation, 8(2), 215–222 https://doi.org/10.2218/ijdc.v8i2.285

Sofi-Mahmudi, A. and Raittio, E. (2022). Transparency of COVID-19 related research in dental journals. Frontiers in Oral Health, 3, p. 871033. Available at: https://doi.org/10.3389/froh.2022.871033

Stall, S., Yarmey, L., Cutcher-Gershenfeld, J., Hanson, B., Lehnert, K., Nosek, B., Parsons, M., Robinson, E. and Wyborn, L. (2019). Make scientific data FAIR. Nature, 570(7759), 27–29. https://doi.org/10.1038/d41586-019-01720-7

Sun, C., Emonet, V. and Dumontier, M. (2022). A comprehensive comparison of automated FAIRness evaluation tools. In K. Wolstencroft, A. Splendiani, M.S. Marshall, C. Baker, A. Waagmeester, M. Roos, R. Vos, R. Fijten, & L.J. Castro (Eds.) 13th International Conference on Semantic Web Applications and Tools for Health Care and Life Sciences, 44-53. https://ceur-ws.org/Vol-3127/paper-6.pdf.

U.S. National Science Foundation (2018). Data management guidance for SBE directorate proposals and awards. https://new.nsf.gov/sbe/data-management

Weller, K. and Kinder-Kurlanda, K. (2021). Uncovering the challenges in collection, sharing and documentation: The hidden data of social media research?, Proceedings of the International AAAI Conference on Web and Social Media, 9(4), 28–37. https://doi.org/10.1609/icwsm.v9i4.14687

Weller, K. and Strohmaier, M. (2014). Social media in academia: How the Social Web is changing academic practice and becoming a new source for research data, it - Information Technology, 56(5), 203–206. https://doi.org/10.1515/itit-2014-9002

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble, C., Grethe, J.S., Heringa, J., ’t Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J. and Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship’, Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18

Wissenschaftsrat (2020). ‘Zum Wandel in den Wissenschaften durch datenintensive Forschung’. https://www.wissenschaftsrat.de/download/2020/8667-20.pdf?__blob=publicationFile&v=5

Zenk-Möltgen, W. (2012). ‘Metadaten und die Data Documentation Initiative (DDI)’, in R. Altenhöner and C. Oellers (Eds.) Langzeitarchivierung von Forschungsdaten: Standards und disziplinspezifische Lösungen (pp. 111–126). Scivero Verl

Zenk-Möltgen, W. (2023, November 27-29) Implementing Colectica at the GESIS data archive [Conference presentation].EDDI2023, Ljubljana, Slovenia. https://doi.org/10.5281/ZENODO.10257202

Zenk-Möltgen, W., Akdeniz, E., Katsanidou, A., Naßhoven, V. and Balaban, E. (2018.) Factors influencing the data sharing behavior of researchers in sociology and political science, Journal of Documentation, 74(5), 1053–1073. https://doi.org/10.1108/JD-09-2017-0126

Zenk-Möltgen, W. (2024). Replication data and code for: The role of FAIR principles in high-quality research data documentation: Looking at national election studies, (GESIS SDN-10.7802-2798; Version 1.0.0) [Data set]. GESIS. https://doi.org/10.7802/2798

Downloads

Published

2025-06-25

How to Cite

Zenk-Möltgen, W. (2025). The role of FAIR principles in high-quality research data documentation: Looking at national election studies. IASSIST Quarterly, 49(2). https://doi.org/10.29173/iq1119