iassist quarterly - 25

A Generalized Approach to
Data Quality Assurance and
Control of Large, Complex
Data Structures Using SAS

by Herbert C. Reynolds
and Donald P. Trees !

Viar and Company, Inc.

Alexandria, Virginia 22314

Introduction

The occurrence of errors in data is one of the most serious problems affecting information
management and utilization. As a direct result, the identification and resolution of data errors is
critical to any information management system. All data acquisition and management efforts utilize
some form of error detection or data editing prior to loading or updating information into a data
base management or archival system. Although the specific nature of the data and data structures
may differ and the required precision and accuracy may vary, the occurrence of errors and systems
to control errors seems constant. Approaches and techniques to identify and resolve data errors have
general applicability independent of specific data content areas.

The purpose of this paper is to discuss the use of SAS to support a general data quality assurance
and control system within a large, complex data acquisition and management effort. The specific
application is in the area of analytical environmental data or data produced when environmental
samples are analyzed in laboratories to determine the occurrence and concentration of priority
pollutants and hazardous substances. The nature of data quality assurance and control and the nature
of the data and application are briefly introduced. The rational and effectiveness of using SAS is
then presented.

1Presented at the International Association for Social Science Information Service and Technology
(IASSIST) Conference held in Washington, D.C., U.S.A. on May 26-29, 1988

Winter 1988

26 — iassist quarterly

Finally, the application of specific SAS procedures within each major data quality assurance and
control activity is discussed and examples given. Primary SAS features discussed include format
tables, multiple record keys, variable length record emulation, macros, conditional output, temporary
work files and automatic character/numeric conversion. Each of these capabilities are used for this
particular environmental data application, but have general applicability to any data error
identification and resolution problem.

D

Nature of Data Quality Assurance

In large scale data acquisition and management systems, data validation, verification, or quality
control editing becomes so important that a separate operation known as data quality assurance and
control is usually created. The process is also known as data editing or cleaning. The primary focus
of such a system is on the identification and resolution of data errors. Such a process insures that
data is of a known quality and within specific data quality control limits.

Three interrelated activities are involved in data quality control or editing:

® Limit specification: developing and stating quality control limits or specifications for defining data
errors. Errors are defined by users of data and are not an inherent property of data

® Error identification: identifying and reporting samples or data elements within samples which
violate established limits

® Error resolution: developing methods and techniques to resolve issues of data integrity resulting
from the identification of a value or values as being inconsistent with or outside the limits.

Each of these three activities may be conducted as a manual or computer assisted process depending
on the format of the data being evaluated and designed according to theoretical or empirically based
information.

—

Environmental Data Structures

The basis for conducting most environmental assessment, monitoring, or remedial actions are the
results from the laboratory analysis of soil and water samples. Each sample is collected and screened
for between 25 to 150 priority pollutants and hazardous substances. Actions are planned according to
the compounds identified and the concentration levels determined.

Winter 1988

iassist quarterly - 27

For this particular environmental program, over 80,000 samples per year are analyzed. The number
of data elements per sample or analysis may total over 2,000 depending on the method of analysis
and the laboratory quality control specifications. The volume of information being checked for a
single group of samples is also enormous. Data for only 50 samples involves approximately 900,000
bytes and over 10,000 records. Many different units of collection and analysis occur and include
sampling episode or group, sample, method, instrument, and compound. Linkage and data association
may involve 6-7 identifiers or keys. Data types and range variability is both numeric and alphabetic
with values from 10-7 to 106 including missing data problems.

The applications area for this particular data quality assurance and control system is in the
Environmental Protection Agency’s Analytical Operations Branch within the Superfund Program and
the Office of Emergency and Remedial Response.

S —
SAS as a Generalized Data Quality Assurance Support System

The system discussed in this paper runs on an IBM 3090 mainframe and consists of 2 program
libraries, 2 table libraries, and 3 SAS databases (containing over 20 individual SAS files) which reside
on both disk and tape. The data checking portion of the system resides in 12 program modules
which total over 15,000 lines of code. The entire system is supported by 25 programs totaling over
35,000 lines of code. This application is large and was designed to run on a mainframe. It
processes, on the average, 12 million bytes of information per day. Because of the modular design of
this system, certain portions can be easily modified to run at the PC level if needed.

The utilization of SAS in developing this data quality assurance system has several advantages over
using a procecural language. If procedural languages are used to design data quality control systems
in scientific areas, several problems can occur:

® TInitial development, frequent modification and necessary documentation by professional
programmers represents considerable time and resource expenditures.

® Users, or knowledgeable persons cannot make changes directly. Programmers do not understand
the substance and meaning of the data, so lengthy requirements analysis discussions must be
conducted in a third language.

® The need for formalized requirements analysis and system documentation again impacts time and
resources and diverts the data users time from research, analysis and problem solving to problem
representation and monitoring.

® Techniques and approach are not directly generalizable to new applications.

The desired objectives for a data quality assurance and control support system language in scientific
areas include:

Winter 1988

28 — iassist quarterly

® A user oriented non—procedural language

® Fase in implementation, extension and modification

® Availability of statistical procedures and functions

® (Capabilities for dealing with missing data and scientific notation

® Facility for supporting effectively within the same system users of different expertise levels

® Generalizability to other data and applications.

The following section discusses and demonstrates SAS features and capabilities which are used for
this particular application. These features and the general approach can be extended to a variety of
data validation and quality and quality control efforts. SAS features and examples of their
application to the data, are presented according to each of the major areas of data quality assurance:
designing QC limits, error identification and error resolution.

S
SAS Features Used in Data Quality Control

For each of the major data quality assurance and control areas, the nature of the required activities,
functions or problems is presented. Within each activity or problem, the SAS features that are
important to this application are then discussed and specific examples presented. Table 1, "SAS
Features Used by QA/QC Activity," summarizes the SAS features by activity performed for each of
the three applications areas: designing limits, error identification, and error resolution.

Designing Quality Control Limits

Data quality control limits or specifications usually include one range check for each data element or
variable and as many logic checks as necessary to evaluate all relationships of interest. A range
check defines the expected or "allowable” codes or values for a given data element. A logic
specification defines the expected logical relationship between two or more data elements. Logic
checks usually involve issues of discrepancy, consistency or invalid relationships between data items.

Within the range and logic classification, two other distinctions can be made. Specifications can be
delineated according to the underlying justification or basis for the check: syntax (structure), semantic
(meaning) and statistical (distributional properties). Specifications can also be differentiated on the
basis of whether the checks occur within a single logical file or across multiple files. The
longitudinal checking of data or the comparison of different data sources are examples of multiple
file or cross file checking.

Winter 1988

iassist quarterly

Table 1
TABLE 1
FEATURES USED BY QA/QC ACTIVITY
QA/QC ACTIVITIES

SAS
FEATURE DESIGNING ERROR ERROR

QC LIMITS IDENTIFICATION RESOLUTION

Storing Data Retrieving Data Retrieving

FORMAT TABLES

Specifications

Specifications

Error Message

MULTIPLE FILE
KEYS

Data Linkage

Data Linkage

VARIABLE LENGTH

Efficient Space

|
|
|
|
|
|
|
|
|
|
|
|
RECORD EMULATION | Utilization
|
SORT AND MERGE | File File File
| Manipulation Manipulation Manipulation
|
FUNCTIONS | Field Field
| Manipulation Manipulation
|
MACROS, %INCLUDE, | Processing
LINK, ETC. | . Control
|
CONDITIONAL | File File File
OUTPUT | Manipulation Manipulation Manipulation
|
TEMPORARY | File File File
WORK FILES | Manipulation Manipulation Manipulation
|
SAS REPORT | Error
FEATURE | Reporting
|
MISSING DATA | Data
FEATURE | Editing
|
AUTOMATIC I
CHAR.-NUM./ | Data Data
NUM.-CHAR. CONV. | Editing Editing
|
UPDATE | Correcting
PROCEDURE | Errors on
| Data
|
FULL SCREEN | Correcting
FILE EDITING | Errors on
|

Error Record

Winter 1988

30 — lassist quarterly

If quality control is conducted by another person or group other than the end user, the customary
procedure is for the person or group to create all implied range and logic syntax checks. Certain
obvious semantic checks might also be proposed. The quality control specifications are then reviewed
and confirmed by the user prior to implementation. Additional semantic and statistical checks are
contributed by the data user to the general set and complete the logical specifications.

The major component of designing quality control specifications include:

® Defining representing and storing limits and relationships

® Linking files and data elements and

® Storing and reporting results.

The use of SAS features in performing each function is discussed and examples given. Primary SAS
features include: format tables, multiple file keys, variable length record emulation, functions,
conditional output, temporary work files and automatic character/numerical conversion.

Defining, Representing, and Storing Variable Limits

Defining limits and relationships of variables requires each variable to be examined to determine its
appropriate value or range of values. It is also to necessary to determine values depending on some
other data qualifier. For example the valid values for variable A is ’0’ or ’1’ - these are the only
two correct entries which variable A can contain. Variable B, however, contains conditional values: if
variable A is ’0’ then variable B may contain either A’ or 'B’, if variable A is ’1’ then variable B
may contain either 'C’, 'D’, or ’E’.

All variable comparisons are written:

VARI] = VARA OR VARI = VARB THEN...

Conditional edits must be coded:

VARI1 =0’ THEN DO...
IF VARI = VARA OR VARI] = VARB THEN...
END

Complex conditional statements similar to the following are not uncommon.
IF Al = 'EVALA’ AND A2 = ’EVALB’ AND A3 = ’EVALC’ THEN DO..
IF A4 =’INDA’ AND A5 = 'INBA’ AND A6 = 'TOXAPH’ THEN ..
IF A7 = AR1016° AND A8 = 'AR1242 AND A9 = 'AR124%’ THEN ...

END

Winter 1988

iassist quarterly - 31

Problems are encountered when trying to represent and store these multiple values/limits and
conditionally determine the validity of variables. Dozens of possible values may need to be stored
and extracted for each variable. Additional problems are encountered when trying to develop the
logic and software needed to perform the edits. The main SAS feature used in representing and
storing QC limits is the use of SAS format tables.

SAS format tables allow convenient storage and retrieval of data specifications. Values can be
extracted from a SAS table and compared to data values for a variable. The use of SAS tables
allows storage of specifications in one place that are necessary to many programs. Format tables
facilitate organizing and updating specifications, to update a specification, one simply changes the
table and reloads the format library. This change is immediately picked up by all programs using
this table.

In the current application, edit specifications (i.e. values, limits, and ranges) are stored in SAS format
tables. These tables are used to structure and organize the edit specifications. The table consists of
a ’key’ lookup field followed by one or more values. For example, given the following data
specifications for four chemical compounds:

Variable 1 Variable 2 Variable 3

Range Limit Valid Codes
Compound 1 (code=110) 10-330 19800 M
Compound 2 (code=120) 10-340 19810 LF
Compound 3 (code=130) 50-340 19800 ML
Compound 4 (code=140) 10-300 19800 MLE

These specifications, after being organized and tabulated, can easily be transformed into a SAS format
table. The following is an example of the above data specifications converted to a table which is
ready to be loaded into a SAS format table.

m»m @6 @ ®) ..

110 10 330 19800 M
120 10 340 19810 LF
130 , 50 340 19800 ML
140 10 300 19800 MLE

This example shows four data specifications for each of the four compounds. Column (1) is the key,
or lookup code, for the compound, followed by four columns, each column being a limit or valid
code for various fields associated with this compound. Column (2) is the lower limit for variable 1,
column (3) is the upper limit for the same variable, column (4) is the upper limit for variable 2
(note that in the specifications, it is necessary to check the upper limit only of variable 2), and
column 5 contains the valid codes which variable 3 may contain.

This file is easy to build and maintain - it is simply an 80 byte text file which can be created and

maintained by any text editor. This file can then be loaded into SAS table format (by using the
SAS format procedure) where it is accessible to all programs.

Winter 1988

32 - iassist quarterly

Multiple tables for various edits and reports may be stored in one file. In this application all format
tables are stored in one text file. By adding a ’table code’ to the beginning of each line an
unlimited number of tables can be stored in one file. The ’table code’ signals the SAS program
which loads the text tables into SAS format tables to write each group of ’table codes’ to a different
format table. Keeping all tables for a system in one place can make maintenance and data
specification modifications much easier. An example of how this text file is structured is shown in
Appendix A.

The Appendix A example consists of several different types of tables. Table #1 stores error codes
and error text messages, Tables #2 and #3 store data QC limits, Table #4 stores chemical
compound names used in formatting reports, and Table #5 stores more data QC limits. Notice that
each table consists of the same components: a table code, a look-up code or key, followed by a text
field which may consist of one or more character or numeric fields (up to 40 bytes long). Appendix
B is an example of the SAS program which reads the text file (Appendix A) and creates a SAS
format table for each text table.

The program in Appendix B builds the SAS code necessary to load each individual text table into a
SAS format table. The benefits of using this method of loading tables is the ease with which
updates to the data specifications can be made - it also allows the user to control the maintenance
of the data specifications. To change edit specifications, the user simply edits the text table file
(Appendix A) and submits the code in Appendix B to execute in a batch job. The changes will then
be represented in all programs accessing these tables.

Linking Data Elements, Files and Specifications

Related data residing on various files must be linked together by key fields before it can be
compared and edited. Problems are encountered when multiple files are involved, each requiring
linkage to another file with a different set of key variables. After file linkage is completed, the data
specifications must be linked into the correct observations for comparison and data editing. Here the
database management capabilities of SAS become important.

The SAS features used in linking data files, records, data elements and specifications include:

® Multiple key fields -
SAS allows any variable on a SAS file to be used as a key field. Any field which is common to
two or more files can be used to link and join observations on these files.

® SAS sort and merge procedures —
The use of the SAS sort and merge procedures facilitates the linking of observations from various
files.

® SAS files — variable length record emulation -
By storing sets of data in multiple files and then linking these files as needed, variable length
record data storage can be emulated in SAS. Because all observations in a given SAS file are the
same length and inefficient as far as space utilization is concerned. Redundant fields can be
summarized and stored on a separate file to save space.

Winter 1988

iassist quarterly - 33

® Temporary work files -
Linkages between observations can be made at the time of the edits in temporary work files.
After data is extracted from the permanent files it is then linked as required for the particular
edits 1o be performed. Once the edits are performed, the temporary file containing the linked
data is erased — this ensures that workspace will be available for later use.

The current application consists of a large collection of variable length data records linked together
by various keys. That is, separate data files are used to partition the redundant sections of records.
Through careful file design, the large and inefficient data structures are efficiently stored and
accessed in SAS files. ’

File design is very important. SAS files can be inefficient if not designed carefully with the
applications in mind. Large amounts of data may become difficult and costly to maintain. Efficient
storage can be obtained through variable length record emulation. Many of the data forms received
from the labs contain multiple observations with the same value for a specific field. For example,
header information applies to many detail records. Redundant fields can be extracted and stored just
once in a separate file and merged back when needed using the proper keys. This technique
considerably reduces storage space requirements and processing the data for specific applications is
more efficient. There are some drawbacks in certain data applications - these drawbacks include the
need for additional logical data manipulation operations.

An example of this variable length record emulation in SAS files is shown by the design of the SAS
files for "Form I'. Data received from the laboratories on 'Form I’ actually consists of 3 types of
data (see example of Form I in Appendix C). The least efficient (but simple) SAS representation of
this file would be one SAS observation per page of the form. Keeping in mind how the data will
be processed and more importantly storage efficiency, the data may be partitioned into header
information and compound results. Further analysis of the forms shows that much of the header
information on each page is repetitive and can be summarized and stored in a separate file partition.
Ultimately four files resulted from the partitioning of *Form I': Header Information, Results, TIC
Results, and SDG Information (see examples of these files in Appendix D). These four files are
processed independently or merged together to create the original form format. The impact on
storage efficiency is dramatic compared to the single record case. Storage requirements are reduced
by a factor of four.

Extensive editing and data checking requirements require that files be built with multiple linkages.
Each observation on each file has explicit linkages to observations on every other file to which it
must be linked. Key fields which link units of data differ depending on the units being linked.
This can be demonstrated in the four "Form I’ files mentioned above (see Appendix D).

The basic unit of analysis for this application is the sample delivery group (SDG). During the
editing process, all data for a given SDG (SDG is the highest level key on all files) is extracted
from the master files and placed in temporary work files. As shown in the example files in
Appendix D, each file contains the master SDG key (SDG_NO). To link files 1, 2 and 3 together
(after extraction by SDG) is a simple merge by the variable 'SAMPLE’. Variables from file 4 (SDG
information) are merged in by the variable 'SDG_NO’. Other data files, however, do not contain
"SAMPLE’ and must be linked by additional variables. For example, file 5 (instrument tuning

Winter 1988

34 — iassist quarterly

information) is linked to file 1 by 'SAMPLE". File 6 (instrument calibration information) is linked to
file 5 by instrument identifier (IN_IDF5, IN_IDF6). The only way to link file 1 to file 6 is by
using file 5 as an intermediate link. One file 6 observation applies to many file 1 observations, in
other words one ‘tune’ applies to many ’samples’. This example begins to show some of the
complexity of the data.

Observations in each file for each SDG must be checked against corresponding fields on other files.
In some cases a single observation on one file may apply to multiple observations on another file.
Using SAS sorts and merges, each unit of data can be temporarily linked to its corresponding data
on any other file, the edits applied, and error records generated. Storing and Reporting Results

Reporting and storing results from complex multi-leveled edits can be very complicated. Multiple
error records may be generated from a single data problem and determining which piece of data
generated the error can be difficult. The error record must contain all information necessary to fully
explain the nature of the error and indicate the location of the observation on which the error
resides. FError reports must be written to summarize the errors in an convenient and usable form
which can be understood by the user.

The major SAS features used in results reporting include:

® SAS format tables —
SAS format tables are useful for storing error message text information.

® Data manipulation -
The ease with which files and observations can be handled in SAS allows various error reports
and summaries to be produced from the error records.

® SAS functions -
SAS functions allow the manipulation of results for reporting purposes.

® (Conditional outputs -
Conditional output statements aid in manipulating data and files.

In the current application, as each error or discrepant data field is encountered an error record is
generated. This error record contains all necessary information to fully document the nature of the
error. This includes the variable which caused the error, the related variable from which the
comparison was made, the location of the observation on which the error resides, the date and time
at which the edits were executed and the value which the field should be (if it is possible to
calculate). This information allows detailed error reports to be produced and also allows the
discrepant record to be located and corrected if desired.

Since many error records can be produced, the error file needs to use space as efficiently as possible.
Multiple error messages may need to be created to fully explain a data problem. As the data is
checked, each time an error is encountered an error record is output. A discrepant variable on one
observation may cause multiple errors to be produced on related observations. For example, in this
application, if an instrument calibration run is bad, all samples associated with this calibration run are

Winter 1988

tasstst - quarterly

flagged as in error.

-3

The structure of the error record is shown below.

Key Fields: SDG number

Error

Case number

Sample number

Date and time of edit

Additional key field (if necessary)
Error Code

Information: Related observation and field name

Error

(from variable comparisons)
Current value of discrepant field

Correction Correct value of discrepant field

SAS format tables are used to store the text for the error code which explains the nature of the
error. The following is an example of the text storage for several error codes.

Error Code

980

990
1000
1010
1020
1030
1040
1050
1060

Text Message

Injection date

Instrument identifier

Column

Percent decanted incorrect for standard
Preliminary sequence incorrect
Excessive standards between standards
Date sample received outside limits
Sequence not in chronological order
12 hour standard exceeds limits

The table consists of a unique error code or error number followed by a text string which when
combined with the other error information on the error record tells the nature of the error and its
location on the files. These text messages are decoded from the error code for reporting purposes.

To produce usable error reports, the error records for a particular set of data are selected, analyzed,
and summarized. As shown on the sample error report (see Appendix E) the report is summarized
by sample and form number. For each error, enough information is presented to the user to locate
the field in error on the hardcopy forms. Note that redundant errors are summarized and not
displayed. Additional fields are stored on the error record but are not needed on this report. These
additional fields will be used later to locate and update the discrepant variables.

Error Identification

Once error specifications are designed and implemented, data can be evaluated accordingly. Each
machine readable record and data element is passed against the pre-programmed specifications using
SAS. Response fields are checked as to allowable values, consistency and substantial relationships
between data elements. Error report listings are generated for data that do not conform to cleaning

Winter 1988

36 — iassist quarterly

specifications. Errors must be identified unambiguously according to location in the original hardcopy
document or package. Such identification requires the use of multiple keys. The original hardcopy
documents, existing policy decision and queries to the generator of this source data maybe used to
determine the nature of the error and the appropriate method of resolution.

Major activities performed under the error identification system include:

® Reformatting and restructuring of data

® Retrieval and comparison of tolerance specifications with the data,

® Writing data checks, and

® Unambiguously identifying errors.

Primary SAS features used include format tables, multiple file keys, functions, macros, conditional
output, temporary work files, missing data features and automatic character/numerical conversion.
Reformatting and Restructuring the Data

Before data can be checked against tolerance specifications it must first be organized in a form
allowing related fields to be compared. With certain types of data this is a complex problem.
Analytical results data are reduced from 80 raw data record types to 16 partitioned files (SAS files).
These 16 files must be restructured and merged for the various edits.

The major SAS features used to restructure the data are:

® (Conditional output to temporary work files

® File sorting and merging

In the current application, data are extracted from the permanent files by SDG (sample delivery
group). A batch job is submitted to edit one SDG which reads through the permanent files and
extracts all data for this one SDG using conditional outputs, the extracted records are written to
temporary work files. All data necessary to execute the edits are then available to the program. The
work files are then structured (through sorting and merging) as needed for each edit.

Retrieval and Comparison of Specifications with the Data

Hundreds of variables are edited, each of which may contain multiple discrete values or ranges of
values. The retrieval of the data specifications for each variable must be integrated with the edit
process to compare these specifications with the data fields. Through the use of SAS format tables

to store data specifications, the retrieval of these specifications can be done as needed throughout the
edit process. ‘

Winter 1988

iassist quarterly - 37

The SAS features used to retrieve and compare specifications with the data are:

® SAS format tables -
SAS format tables allow quick revival of data specifications.

® SAS functions -
The SAS *SUBSTRING’ and 'INDEX’ functions are useful in manipulating data specification
strings. The 'PUT’ function allows retrieval of data specifications from format tables.

® SAS character/numeric conversion handling -
SAS will automatically convert a character string to a numeric field (and vice versa) if it is
necessary for a data comparison.

In this application table specifications are retrieved from the format tables using both the SAS 'PUT’
and 'SUBSTR’ functions. The following sample of SAS code shows how the low and high limits for
a particular variable for one compound are extracted from the format file.

CRQL = PUT(CAS_NO,$CRQL.);
LCRQL = SUBSTR(CRQL,2,5);
HCRQL = SUBSTR(CRQL,$,5);

The "PUT" function takes the compound code stored in the variable "CAS-NO" and retrieves the
values for that compound from the SAS Format table named "SCRQL". The variable CRQL
contains the entire set of limits for that chemical compound. CRQL is divided into the low and
high limits through the use of the SAS *SUBSTR’ function. Variables LCRQL and HCRQL now
contain the low and high limits for a given variable and can be used for comparisons.

Another feature of SAS which is very helpful in coding edits and data comparisons is the automatic
numeric/character and character/numeric conversion. Fields will be automatically converted by SAS

if needed. This feature is helpful when retrieving values from format tables because all fields stored
in format tables are character.

Writing Data Checks

Writing the code to check the data against other data elements and against specifications is probably
the most complex task in the entire editing process. The logic involved and amount of code required
to perform the edits is substantial. The SAS features used to write data checks include:

® SAS functions -
SAS maintains an extensive library of character string manipulation, numeric and date/time
handling functions. The use of built-in SAS functions can greatly simplify the storage, retrieval,
and comparison of tabled specifications.

® Processing control features -

The SAS MACRO facility, INCLUDE, LINK, and conditional output statements give added
control over program processing.

Winter 1988

38 — iassist quarterly

® SAS missing data feature -
Empty or missing values can be recognized by SAS by using special program statements which
help simplify the handling of missing data.

Many SAS features were used to write data checks for this application. The large number of data
fields to be checked and the varied nature of the checks and data requires various techniques to
optimize and make the processing more efficient.

Functions greatly facilitate date/time handling which can be difficult and time consuming. SAS date
and time functions can read, store, and format date and time variables in a number of formats.

SAS string manipulation functions like the INDEX’ and 'INDEXC’ functions are used to search
strings for specific characters or character strings. SAS LEFT’ and 'RIGHT’ functions are used to
justify data within fields before comparisons. The *COMPRESS’ function is used to remove certain
characters from fields and the *TRIM’ function is used to remove blank characters.

SAS MACROS, %INCLUDE statement and the LINK statement are used mainly for the execution of
redundant data checks. Writing one piece of code and calling it repeatedly (passing different
parameters as needed) greatly reduces the amount of coding. GO-TO statements, the
[F-THEN-ELSE statement, and various types of DO-LOOPS are used to reduce run time and make
the programs run more efficiently. These statements are used to bypass small sections of code which
need conditional execution.

Larger sections of code can be skipped by the use of macros and global variables. In this
application, for example, there are three general groupings of chemical compounds called fractions.
Certain edits are done on all three fractions, and some are done on one specific fraction only. Data
packages received may contain only one or two of the three possible fractions. Code bypasses are
used to save processing and avoid the program executing code on edits for which there are no data.
By checking the data to see which fractions are present and storing this flag in a global variable,
decisions to skip entire edits can be made. The following example of SAS code shows how this is
done.

DATA CHECK;
SET FILE9(KEEP=ONEVAR) END=EDF;
IF EOF THEN DO;
IF ONEVAR NE ’ ’ THEN DO;
CALL SYMPUT(GLOBVAR’YES’);
END;
END; RUN;

The above example of code reads a file to see if any data are present, if there are data present then
YES’ is assigned to the global SAS variable ‘GLOBVAR’. Later, the editing program executes the
following macro to process the desired section of code.

%MACRO FILEY;
IF &GLOBVAR = YES %THEN %DO;

Winter 1988

iassist quarterly - 39

%INCLUDE LIB(FILE9);
END;

This macro checks the global variable "GLOBVAR’ and if it is set to 'YES’ (which means there is
data present to be edited) brings in the code necessary to edit this data (in this example, file 9 data)
and executes it. Since the code for editing file 9 is over 500 lines, skipping over this code when
there is no file 9 data can save considerable processing time.

Processing missing data can be difficult unless the software being used has features to deal with
missing variables. SAS has built-in mechanisms to process missing and blank data fields. These
mechanisms free the programmer from writing the code to handle missing data problems. Most SAS
functions and procedures automatically handle missing data fields.

ldentifying the Nature and Location of the Error

Identifying the exact nature of an error and determining in which file the observation containing the
error can be found is a critical issue. Reliable error reports and error resolution can be performed
only if error identification is unambiguous. The major SAS features used in identifying the nature
and location of an error include:

® Data manipulation features

® SAS format tables

The nature of an error is determined as precisely as possible during the edit using field comparisons
and double-checking of values to related fields. As much information as possible is gathered about
each error. This information is stored on a permanent error file for subsequent reporting and data

correction purposes.

In the current application, a 40 character text field containing a description for each 2 character error
code is stored in a format table. The error code written to the error record is *decoded’ or
‘formatted’ to this 40 character text field in the error report.

Error Resolution

Records or data elements generating error messages are examined during the error resolution process.
When the discrepancy that triggered the error message is resolved, the record or data element is
updated and the resolution re-checked. Eventually, the error message is resolved by correcting or
deleting the data offending the specification, overriding or ignoring the specification for that
particular case or sample, or flagging the data value as suspicious and overriding the specification.
Copies of all file updates and data flags, the final version of the specifications and the originally
received data are kept for documentation. An evaluation of these ancillary files can produce an audit
of the quality assurance and control process.

Major activities involved in error resolution include:

Winter 1988

40 — iassist quarterly

® Identification and resolution of errors.
® (Correction of the error records.

® Application of corrections to the data.

Primary SAS features used in this activity are format tables, conditional output, temporary work files,
SAS report feature, update procedure and full screen file editing.

Identification and Resolution of Key Errors

Through the use of properly designed error reports, errors can be identified and resolved. In certain
types of edits, a single error can generate multiple error records. It is important that the error
reports unambiguously identify the underlying or primary error so that a single correction will correct
the associated errors. Sometimes this will be impossible. A single error source may not be
identified, in which case the errors are corrected and the edits rerun. Several iterations of the
edit-correction process may be necessary to correct all errors.

The SAS features used to identify and resolve errors are:
® SAS report writing

® Data manipulation features

In this application, error reports are generated using the SAS report writing procedure (see example
error report in Appendix E). The SAS print procedure can completely format a detailed report with
a minimum of coding. Various SAS data manipulation features are used to extract and ’prepare’ the
data before they are passed to the print procedure. These error reports are used to locate the
specific error in the hardcopy data forms where a decision can be made about its correction and

resolution.
Correction of the Error Records

Correction of the error records requires user input through on-line and batch processing. Specific
error records must be located and presented to the user for updates. The user-input corrections are
stored on the error records until the data files are updated.

The major SAS feature used in making corrections to the error records is SAS full screen file
editing.

In the current application, errors are being resolved, but the corrected values are not being entered
on the files. Due to the large volume of data being received, the manpower necessary to execute
this error correction process is not yet available. When the correction process is implemented, error
reports will be displayed to the user through the use of SAS Full Screen editing. This SAS facility
allows quick access to SAS files through full-screen terminals. One advantage of using this facility is

Winter 1988

iassist quarterly — 41

that SAS will automatically build the file display screen for the user. Updates made to this file
through full screen editing are input directly to the permanent error file for storage.

Application of the Corrections to the Data

Applying corrections to the data involves finding the file and observation on which the error exists
and replacing the incorrect field with the user input correction. This is done by building into the
error record the necessary keys to locate the observation which generated the error. The SAS
features used to apply the corrections to the data include:

® SAS file sorting and merging

® SAS update procedure

As stated above, corrections are currently not being applied to the data files. When this process is
implemented, the corrected fields on the error records will be applied to the data with the use of the
SAS "UPDATE’ procedure. This procedure will automatically update the value of any number of
variables on one file with the values of corresponding variables on another file. The error records
must first be ’prepared’ for the update using some data manipulation, sorts, and merges.

%

Conclusions

Given the nature of the data and various operational requirements, SAS is an effective system
language for designing a data quality assurance process. In the area of scientific and technical data
collection and processing, a greater variety and scope of data occurs than in business applications.
Data is often collected from multiple sources, on different forms or represented in variable or
relational structures. Each new group of data may have different data problems and require the
modification or design of new error detection routines or reports. Such systems tend to be dynamic
and changes in data and data formats are frequent.

At present over 1,500 data packages have been processed using the described approach. The system
appears to be meeting all user requirements. In addition to the QA/QC processing discussed in this
paper, the system supports data aquisition, electronic data transfer, file management and data archival,
all of which are performed by non-programming personnel. The system also has links to other data
base management systems including Natural/ADABAS and FOCUS and has been linked into
previously existing financial system written in SAS.

The QA/QC support system has been operating in production mode since late 1987. The final
phase, data correction, will go into production in late 1988. All modifications to this system,
including the release of enhancements, have been made without interruption of production processing.
One by-product of the svstem has been the availability of the data to various users. A large
quantity of raw analviical results data has now been accumulated. Since the data are maintained in

Winter 1988

42 — iassist quarterly

SAS files, statistical analyses by users is greatly facilitated.

SAS has proven to be an appropriate a language for supporting generalized error identification and
resolution tasks. Once a quality assurance and control system is structured, knowledgeable users can
design and review data checks. Statements may be added, modified, or deleted easily and quickly.
The same general system features and structure can be extended to other data and data acquisition
efforts. If the system becomes more static and routine, patching in a procedural language such as
PL/1 or C can easily be done to optimize code and increase operational efficiency. The techniques
and approach discussed will be used for future applications which require extensive data quality
control and editing procedures prior to storage and utilization.H

Winter 1988

iassist quarterly

-4

Appendix A : Five SAS tables stored in one text file
TABLE VALUE----- LABEL-----~
TABLE #1: ERRORS
TABLE ERROR CODE ERROR TEXT
01 10 ANALYSIS DATE
01 20 ANALYSIS DATE-BLANK
01 30 ANALYSIS DATE-BLANK FOR CLOUMN 2
01 31 ANALYSIS DATE- FOR COLUMN 2
01 40 ANALYSIS DATE- HEADER
01 50 ANALYSIS DATE-CONT. CALIBRATION
TABLE #2: $SURRQC - SURROGATE RECOVERY ADVISORY QC LIMITS
TABLE SURR. CODE =~ 2A -] 2B]- 2C -] 2D]- 2E-]- 2F -
02 s1 088110081117035114023120024154020150
02 s2 086115074121043116030115
02 s3 076114070121033141018137
02 sS4 010094024113
02 S5 021100025121
02 s6 010123019122
TABLE #3: $MSMSDQC - MATRIX SPIKE/MATRIX SPIKE RECOVERY QC LIMITS
TABLE CAS_NO RPD REC-REC RPD REC-REC ORD
03 75354 014 061 145 022 059 172
03 79016 014 071 120 024 062 137
03 71432 011 076 127 021 066 142
03 108883 013 076 125 021 059 139
03 108907 013 075 130 021 060 133

TABLE #4: $SCMPDNAME - COMPOUND NAMES

VOLATILE COMPOUNDS
TABLE CAS_NO

04
04
04
04
04

TABLE

TABLE
07
07
07
07
07
07
07
07

Winter 1988

74873
74839
75014
75003
75092

#5: $CCCSPCC - THIS IS FOR FORM 6 MIN RRF, MAX % RSD
AND FOR FORM 7 MIN RRF50, MAX % D

CAS_NO

74873
75014
75354
75343
67663
78875
75252
79345

01
02
03
04
05

COMPOUND NAME
CHLOROMETHANE
BROMOMETHANE
VINYL CHLORIDE
CHLOROETHANE
METHYLENE CHLORIDE

RRFLIM RSDLIM RRFS50LIM

0.30 0.30
30.0
30.0
0.30 0.30
30.0
30.0
0.250 0.250
0.30 0.30

DLIM

COMMENT----

44 — . iassist quarterly

Appendix B : SAS program to load SAS format tables

DATA TAB(KEEP=TABLE VALUE LABEL);
INFILE TABLES;
LENGTH TABLE 2. VALUE $10. LABEL $40.;
KEEP TABLE VALUE LABEL;
INPUT @2 TAB_ID $CHAR2. @7 VALUE $CHAR10. €19 LABEL $CHARA40.;
IF INDEXC(TAB_ID, '123456789') GT O THEN DO;
TABLE = TAB_ID;
OUTPUT;
END;

PROC SORT DATA=TAB;
BY TABLE;

DATA _NULL_;

SET TAB END=EOF;

BY TABLE;

FILE TEMP1;

IF FIRST.TABLE AND TABLE EQ 1 THEN DO;
PUT @1 'PROC FORMAT DDNAME=FORMAT;';
PUT @1 'VALUE ERRORS';

END;

IF FIRST.TABLE AND TABLE EQ 2 THEN DO;
PUT @1 'PROC FORMAT DDNAME=FORMAT;';
PUT €1 'VALUE $SURRQC';

END;

IF FIRST.TABLE AND TABLE EQ 3 THEN DO;
PUT @1 'PROC FORMAT DDNAME=FORMAT;';
PUT @1 'VALUE $MSMSDQC';

END;

IF FIRST.TABLE AND TABLE EQ 4 THEN DO;
PUT @1 'PROC FORMAT DDNAME=FORMAT;';
PUT @1 'VALUE $CMPDNAME';

END; |

IF FIRST.TABLE AND TABLE EQ 5 THEN DO;
PUT @1 'PROC FORMAT DDNAME=FORMAT;';
PUT @1 'VALUE $CCCSPCC';

END;

IF FIRST.TABLE AND TABLE EQ 6 THEN DO;
PUT €1 'PROC FORMAT DDNAME=FORMAT;';
PUT €1 'VALUE $CRQL';

END;

IF FIRST.TABLE AND TABLE EQ 7 THEN DO;
PUT @1 'PROC FORMAT DDNAME=FORMAT;';
PUT €1 'VALUE $CMPDTAB';

END;

PUT @3 VALUE $CHAR10. @15 '="' @17 LABEL $CHAR40. '"';

IF LAST.TABLE THEN PUT ';';

IF EOF THEN PUT ';';

RUN;

OPTIONS DQUOTE;

%INCLUDE TEMP1;
RUN;

Winter 1988

iassist quarterly - 45
Appendix C : Data collection forms - form la
1A EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSIS DATA SHEET
| |
| |
Lab Name: Contract: | |
Lab Code: Case No.: SAS No.: SDG No.:
Matrix: (soil/water) Lab Sample ID:
Sample wt/vol: (g/mL) Lab File ID:
Level: (low/med) Date Received:
% Moisture: not dec. Date Analyzed:
Column: (pack/cap) Dilution Factor:
CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) Q
]	
74-87-3—=—=—=———ee Chloromethane		
74-83-9—===—=—== Bromomethane		
75-01-4-—==—=—uu= Vinyl Chloride		
75-00-3—-——=—===—= Chloroethane		
75-09-2—-—====== Methylene Chloride		
67-64-1-—————~—— Acetone		
75-15-0—-===—==—==— Carbon Disulfide		
75-35-4——=—————- 1,1-Dichloroethene		
75-34-3———====—= 1,1-Dichloroethane		
540-59-0-====——~ 1,2-Dichloroethene (total)_		
67-66=3——=—=———— Chloroform		
107-06-2======== 1,2-Dichloroethane		
78-93-3-———==—==— 2-Butanone		
71-55-6—==—=——==~ 1,1,1-Trichloroethane		
56-23-5-——=——==—- Carbon Tetrachloride		
108-05-4-—==—=—~ Vinyl Acetate		
75-27-4===———uum Bromodichloromethane		
78-87-5-——=—===- 1,2-Dichloropropane		
10061-01-5-=——=~ cis-1,3-Dichloropropene		
79-01-6———=—=—=~ Trichloroethene		
124-48-1-=————~= Dibromochloromethane		
79-00-5-=—==—=—- 1,1,2-Trichloroethane		
71-43-2-=====——- Benzene		
10061-02-6-=-———- trans-1,3-Dichloropropene_		
75-25-2--=-=————- Bromoform		
108-10-1--~~~——— 4-Methyl-2-Pentanone		
591-78-6--—————-- 2-Hexanone		
127-18-4——--————~ Tetrachloroethene		
79-34-5-——-=————- 1,1,2,2-Tetrachloroethane___		
108-88-3-==—~——- Toluene		
108-90-7-———==—-— Chlorobenzene		
100-41-4-——————- Ethylbenzene		
100-42-5-=====—-~ Styrene		
1330-20-7--—----- Xylene (total)		
I I | |
FORM I VOA 1/87 Rev.

Winter 1988

46 —

iassist quarterly

Appendix C : Data collection forms - form 1b

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Contract: | |

Lab Code: Case No.: SAS No.: SDG No.:

Matrix: (soil/water) Lab Sample ID:

Sample wt/vol: (g/mL) Lab File ID:

Level: (low/med) Date Received:

% Moisture: not dec. dec. Date Extracted:

Extraction: (SepF/Cont/Sonc) Date Analyzed:

GPC Cleanup: (Y/N) PH: pDilution Factor:

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) Q
108-95-2-—=——=== Phenol		
111-44-4-=—————< bis(2-Chloroethyl)ether		
95-57-8===———=== 2-Chlorophenol		
541-73-1-===———- 1,3-Dichlorobenzene		
106-46-7~====—== 1,4-Dichlorobenzene		
100-51-6-===—=== Benzyl alcohol		
95-50-1-====—=—- 1,2-Dichlorobenzene		
95-48-7-=====—== 2-Methylphenol		
108-60-1-======= bis (2-Chloroisopropyl)ether_		
106-44-5-~————== 4-Methylphenol		
621-64-7—-=====—= N-Nitroso-di-n-propylamine__		
67=-72=1-—=——==== Hexachloroethane		
98-95-3—======—= Nitrobenzene		
78-59-1-—==—==== Isophorone		
88-75-5~-—===———= 2-Nitrophenol		
105-67-9-=====-- 2,4-Dimethylphenol		
65-85-0—======== Benzoic acid		
111-91-1-===———= bis (2-Chloroethoxy)methane		
120-83-2======-= 2,4-Dichlorophenol		
120-82-1-====="—- 1,2,4-Trichlorobenzene		
91-20-3-=—=———== Naphthalene i		
106-47-8-—====== 4-Chloroaniline		
87-68-3======—== Hexachlorobutadiene		
59-50-7======—== 4-Chloro-3-methylphenol		
91-57-6—=—===—== 2-Methylnaphthalene		
77-47-4-——===—== Hexachlorocyclopentadiene		
88-06-2-=====—== 2,4,6-Trichlorophenol		
95-95-4-—==—==== 2,4,5-Trichlorophenol		
91-58-7-====—=—- 2-Chloronaphthalene		
88-74-4-==—=———-— 2-Nitroaniline		
131-11-3-======= Dimethylphthalate		A
208-96-8———————— Acenaphthylene		
606-20-2-———==== 2,6-Dinitrotoluene		
I		
FORM I SV-1 1/87 Rev.

Winter 1988

iassist quarterly

47

Appendix C : Data collection forms - form Ilc

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE

NO.

Lab Name: Contract: |

Lab Code: Case No.: SAS No.: SDG No.:

Matrix: (soil/water) Lab Sample ID:

Sample wt/vol: (g/mL) Lab File ID:

Level: (low/med) Date Received:

% Moisture: not dec. dec. Date Extracted:

Extraction: (SepF/Cont/Sonc) Date Analyzed:

GPC Cleanup: (Y/N) pH: Dilution Factor:

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg)__ Q

99-09-2-=-=————= 3-Nitroaniline		
83-32-9-=====——= Acenaphthene		
51-28=5-—————=== 2,4-Dinitrophenol		
100-02-7--——--=- 4-Nitrophenol		
132-64-9----———- Dibenzofuran		
121-14-2---————- 2,4-Dinitrotoluene		
84-66-2-——=————— Diethylphthalate]		
7005=72-3======= 4-Chlorophenyl-phenylether _		
86=73-7—======== Fluorene		
100-01-6-——=————— 4-Nitroaniline		
534-52-1-—-———-- 4,6-Dinitro-2-methylphenol __		
86=-30-6=—==—=——= N-Nitrosodiphenylamine (1)_		
101~55-3—===~==- 4-Bromophenyl-phenylether		
118-74-1-=====—= Hexachlorobenzene		
87-86-5-——————=— Pentachlorophenol		
85-01-8-—=—==-—= Phenanthrene		
120-12=-7========— Anthracene		
84=74=2=====—==~ Di-n-butylphthalate		
206-44-0--—=—-=-- Fluoranthene		
129-00-0-======= Pyrene		
85-68-7—======== Butylbenzylphthalate		
91-94-1--—-~——=— 3,3'~Dichlorobenzidine		
56=-55-3-======== Benzo (a)anthracene		
218-01-9======== Chrysene		
117-81-7--———--= bis(2-Ethylhexyl)phthalate		
117-84-0-===—=—— Di-n-octylphthalate		
205-99-2~======= Benzo (b) fluoranthene		
207-08-9—=—===—= Benzo (k) fluoranthene		
50-32-8-———————-— Benzo (a)pyrene		
193-39-5-—====== Indeno(1l,2,3-cd)pyrene		
53-70-3-—=—=—=—- Dibenz (a,h)anthracene		
191-24-2-----—-- Benzo(g,h,i)perylene		
I I I		
(1) - cannot be separated from Diphenylamine

FORM I SV-2

Winter 1988

1/87 Rev.

48 —

iassist quarterly

Appendix C : Data collection forms - form 1d

1D EPA SAMI'Mf NG.
PESTICIDE ORGANICS ANALYSIS DATA SHEET
| |
| |
Lab Name: Contract: | |
Lab Code: Case No.: SAS No.: SDG No.:
Matrix: (soil/water) Lab Sample ID:
Sample wt/vol: (g/mL) Lab File ID:
Level: (low/med) Date Received:
% Moisture: not dec. dec. Date Extracted:
Extraction: (SepF/Cont/Sonc) Date Analyzed:
GPC Cleanup: (Y/N) pH: Dilution Factor:
CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) Q

| | | |

| 319-84-6--———-—- alpha-BHC] | |

| 319-85-7-——————~ beta-BHC | | |

| 319-86-8-==——==—— delta-BHC | | |

| 58-89-9————————— gamma-BHC (Lindane) | | |

| 76-44-8-=—==—=—== Heptachlor | | |

| 309-00-2-—————— Aldrin | | |

| 1024-57-3======= Heptachlor epoxide | | |

| 959-98-8-======- Endosulfan I | | |

| 60-57-1-—=————=—= Dieldrin | | |

| 72-55-9======—==- 4,4'-DDE | | |

| 72-20-8-=--=———- Endrin | | |

| 33213-65-9——-—--— Endosulfan II | | |

| 72-54-8-———————- 4,4'-DDD | | |

| 1031-07-8======— Endosulfan sulfate | |

| 50-29-3-———————- 4,4'-DDT | | |

| 72-43-5-=======< Methoxychlor | | |

| 53494-70-5-~————- Endrin ketone | |

| 5103-71-9-—===—=— alpha-Chlordane | | |

| 5103-74-2--—=——— gamma-Chlordane | | |

| 8001-35-2~===——- Toxaphene | | |

| 12674-11-2~===~~ Aroclor-1016 | |

| 11104-28-2------ Aroclor-1221 | | |

| 11141-16-5--——-- Aroclor-1232 | | |

| 53469-21-9-—-———- Aroclor-1242 | | |

| 12672-29-6-———— Aroclor-1248 | | |

| 11097-69-1-----~ Aroclor-1254] | |

| 11096-82-5-—~——~ Aroclor-1260 I | |

I | ! I

FORM I PEST 1/87 Rev.

Winter 1988

iassist quarterly _

49

Appendix C : Data collection forms - form le

1E EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS | |
I |

Lab Name: Contract: | |
Lab Code: Case No.: SAS No.: SDG No.:

Matrix: (soil/water) Lab Sample ID:

Sample wt/vol: (g/mL) Lab File ID:

Level: (low/med) Date Received:

% Moisture: not dec. Date Analyzed:

Column: (pack/cap) __ Dilution Factor:

CONCENTRATION UNITS:
Number TICs found: (ug/L or ug/Kg)

CAS NUMBER COMPOUND NAME RT EST. CONC.

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

FORM I VOA-TIC 1/87 Rev.

Winter 1988

50 -

iassist quarterly

Appendix C : Data collection forms - form 1f

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA

SAMPLE NO.

TENTATIVELY IDENTIFIED COMPOUNDS |

Lab Name:

Lab Code: Case No.:

Matrix: (soil/water)

Sample wt/vol:

Level: (low/med)

$ Moisture: not dec. dec.
(SepF/Cont/Sonc)

(Y/N)__

Extraction:

GPC Cleanup: pH:

Number TICs found:

Contract:

SAS No.:

(g/mL)

SDG No.:

Lab Sample ID:

Lab File ID:

Date Received:
Date Extracted:
Date Analyzed:

Dilution Factor:

CONCENTRATION UNITS:

(ug/L

CAS NUMBER

COMPOUND NAME

or ug/Kg)

RT EST.CONC.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

FORM I SV-TIC

1/87 Rev.

Winter 1988

iassist quarterly

51

Appendix D : Example sas files

HEADER INFORMATION

#
14
17
15
16
24
19
20
10

1
21
"

6
23
13
18
22
12

ONWVESWE N

NESEUWOAN—20WV 3

-

-
NOHNWONO = O

Winter

FILE 1

VARIABLE TYPE
ADATEF1 NUM
CO_UNITS CHAR
COLUMN1 CHAR
DILUTION NUM
DRD NUM
EXTDATE1 NUM
EXTRACT1 CHAR
FILE_ID1 CHAR
FORM CHAR
GPC CHAR
LEVEL CHAR
MATRIX CHAR
NO_TICS CHAR
P_MOIST NUM
P_MOISTD NUM
PH_ NUM
RECDATE NUM
SAMP_ID1 CHAR
SAMP_WT NUM
SAMPLE CHAR
SAS_NO CHAR
SDG_NO CHAR
SUFFIX CHAR
WT_UNITS CHAR

FILE 2
RESULTS FILE
VARIABLE TYPE

CAS_NO CHAR
DRD NUM
FORM CHAR

QUAL CHAR
RESULT1 NUM
SAMPLE CHAR
SDG_NO CHAR
SUFFIX CHAR

FILE 3
TIC RESULTS
VARIABLE TYPE

CAS_NO CHAR
COMPOUND CHAR
DRD NUM
FORM CHAR
QUAL CHAR
RESULT2 NUM
RT NUM
SAMPLE CHAR
SDG_NO CHAR

SEQUENCE CHAR
SUFFIX CHAR

1988

LENGTH

-

-

-
NRNVONONOORONVWaAWESS®00mS N

LENGTH

pury
NV WVTW D

LENGTH
10
28

-—
NNV OOWVWW®

FILE &
SDG INFORMATION
VARIABLE TYPE LENGTH

5 CASE_NO CHAR S
2 CONTRACT CHAR 1
6 DRD NUM 8
3 LAB_CODE CHAR 6
1 LAB_NAME CHAR 25
7 LOADDATE NUM 8
4 SDG_NO CHAR 5
FILE S

TUNING INFORMATION
VARIABLE TYPE LENGTH
46 ADATEFS NUM
47 ATIMEFS NUM
7 COLUMNS CHAR
49 DRD NUM
45 FILE_IDS CHAR
1 FORM~ CHAR
11 IN_IDFS CHAR
10 INJ_DATE NUM
12 INJ_TIME NUM
6 LEVEL CHAR
S MATRIX CHAR
32 ME127 NUM
17 ME173 NUM
18 ME173M NUM
19 ME174 NUM
20 ME175 NUM
21 MEI75M NUM
22 ME176 NUM
23 ME176M NUM
24 ME177 NUM
25 ME177M NUM
33 ME197 NUM
34 ME198 NUM
35 ME199 NUM
36 ME275 NUM
37 ME36S NUM
38 ME441 NUM
39 ME4L2 NUM
40 ME4L3 NUM
41 MEGL3M NUM
13 MESO NUM
26 MES1 NUM
27 ME68 NUM
28 MEGBM NUM
29 ME6Y NUM
30 ME7T0 NUM
31 ME7OM NUM
14 METS NUM
15 ME9S NUM
16 ME9S NUM
8 PAGE CHAR
48 PAGETOT CHAR
44 SAMP_IDS CHAR
43 SAMPLE CHAR
3 SAS_NO CHAR
4 SDG_NO CHAR
42 SEQUENCE CHAR
2 SUFFIX CHAR
9 TFILE_ID CHAR

- b

-

FILE 6

CALIBRATION INFORMATION
1 AVG_RRF6 NUM

26
24
8
25
2
12
13
14
15
16
10
1"
9
7
6
27
17
18
19
20
21
23
4
5
1
3
28

BHRCTO
CAS_NO
COLUMNG
DRD

FORM
F6F_ID1
F6F_1D2
F6F_1D3
F6F_ID4
F6F_IDS
ICDATE16
ICDATE26
IN_IDF6
LEVEL
MATRIX
PKRCTO
RRF1
RRF2
RRF3
RRF4
RRFS

RSD
SAS_NO
SDG_NO
SEQUENCE
SUFFIX
VHRCTO

NUM
CHAR
CHAR
NUM
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
NUM
NUM
CHAR
CHAR
CHAR
NUM
NUM
NUM
NUM
NUM
NUM
NUM
CHAR
CHAR
CHAR
CHAR
NUM

8
8
10
4
8
3
14
14
14
14

-
o~

-

ONNWVNOOROEOEOWVNWO 0K

52 — iassist quarterly

Appendix E : Error report

OARQ ERROR REPORT 13:47 TUESDAY, MAY 24, 1988 1
FOR
LAB: LAB1 SDG: EW341 FORMAT: 'A*
---------------- sescesescesccccccccccenccccccccccncccecs SAMPLESA FORM =6A ----cccccccccccococrrcnecconcccacctiicocitncttanaaaaanan
08S FORM SEQUENCE NUMBER ERROR ERROR CURRENT VALUE CORRECT VALUE SECONDARY COMPARISON
SUFFIX OR COMPOUND NAME NUMBER IDENTIFIER BETWEEN
FORMS
1 AA 430 INSTRUMENT ID VGH#2 SA VS 1A
2 AA 903 MS/MSD MORE FORM3 NEEDED MISSING FORM3?2? 18
3 AA VINYL CHLORIDE 140 COLUMN
4 =>=>z>=>=>=>> NUMBER OF ADDITIONAL RECORDS OF THIS TYPE NoT DISPLAYED 34
5 AA TRANS-1,3-DICHLOROPROPENE 172 COMPOUND MISSPELLED
6 AA CHLOROMETHANE 360 FILE 1D MISSING RRF20
7 AA CHLOROME THANE 410 INITIAL CALIBRATION DATE MISSING
8 =>=>=>E>=>E>> NUMBER OF ADDITIONAL RECORDS OF THIS TYPE NOT DISPLAYED 182
9 A8 CHLOROMETHANE 410 INITIAL CALIBRATION DATE MISSING
10 AB VINYL CHLORIDE 430 INSTRUMENT 1D MISSING
1 AB 2-HEXANONE 70 AVERAGE RRF .307 549 TA VS 6A
12 AA 133027 90 CAS NUMBER 133 027 NOT VALID
13 AC BIS(2- CHLOROETHYL)ETHER 1070 RESULT 780 1600
14 AB 2 1220 SAMPLE NO. MISSING EW341RE
15 AB 133027 90 CAS NUMBER 133 027 NOT VALID
16 A CHLOROETHANE 70 AVERAGE RRF 0.684 0.606 7TA VS, 6A
17 AC 133027 90 CAS NUMBER 133 027 NOT VALID
18 AC 130 CONCENTRATION UNITS UG/KG uG/L
20 AC 3 650 M/E176 <> LIMIT
21 AC . 380 FORM NUMBER
22 AC 4 140 COLUMN PAC PACK
23 AC 1201 SAMPLE ID-BLANK MISSIN G
26 AC GAMMA - BHC 890 MS PERCENT OUT *
feeecteneccetancetcieenenanenns R L LT T seecc-- SAMPLE=B FORM =6A ++-+cvccccocccansaccans ceeeeeeciecttieetecaeaanans ceeeen
08S FORM SEQUENCE NUMBER ERROR ERROR CURRENT VALUE CORRECT VALUE SECONDARY COMPARISON
SUFFIX OR COMPOUND NAME NUMBER IDENTIFIER BETWEEN
FORMS
1 AA TRICHLOROETHANE 960 MSD XRPD 10 -n

Winter 1988

