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Introduction

In survey research we regularly encounter the

following type of question: "which of these

stimuli do you prefer most? which of the

remaining ones do you now prefer most?"

etcetera. Sometimes a full rank order of

preferences is asked in this way, more often

only a partial rank order is obtained.

'Paper prepared for presentation at the
IFDO/IASSIST Conference, Workshop on
Techniques for Secondary Analysis, Amsterdam,
May 20 - 23, 1985. Comments are welcomed
by the author.

Sometimes the question asked is only: "which k

of these n stimuli do you prefer most?" or,

even more generally, "which of these n stimuli

do you prefer?" Such questions can be referred

to as 'ramk n/n', 'rank k/n', 'pick k/n' and 'pick

any/n' data, respectively. Stimuli may be

political parties, candidates, career possibilities,

or brand names of some consumer good.

Rather than asking about 'preference', the

questions may also be phrased in terms of other

evaluative concepts, such as 'sympathy' or

'importance'. In this paper I will be concerned

with analyzing data of the form 'pick k/n' or

'pick any/n'.

Generally these data types are difficult to

analyze. Often responses to such data are only

reported in the form of frequency distributions

of the number of times a stimulus is mentioned

as most preferred, second most preferred,

etcetera. Trying to find structure in these

responses with the help of standard techniques,

such as factor analysis or cumulative scaling, is

not possible either because no full set of

responses to all stimuli is available, or because

the responses given are not independent It is

then difficult to determine whether or not all

responses given were based on the same
underlying criterion. In this paper an analysis

technique is presented that allows one to look

for structure in the responses to 'pick k/n' or

'pick any/n' questions. Since complete or

partial rank orders can always be recoded to the

'pick k/n' form, and since survey questions with

independent responses, such as five-point Likert

items, can be recoded to the 'pick any/n' form,

the type of data analysis presented here can

have very general applicatioa

The data analysis technique presented here is a

dichotomous version of the unfolding model,

proposed by Coombs (1950, 1964), as

'parallelogram analysis'. It differs from Coombs'

original proposal in the following ways: the

technique proposed here allows for some error

(i.e., it conforms to a stochastic model), and it

is an exploratory technique to search for
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maximal subsets of stimuli that can be

represented in a unidimensional unfolding scale.

In both these aspects the 'parallelogram analysis'

model proposed here resembles the stochastic

unidimensional aunulative scaling technique

developed by Mc^en (1971). The reader

should be warned that the technique presented

here is not an all-purpose technique for

analyzing 'pick k/n' or 'pick any/n' data, but

only for those types of data which can be

expected to conform to the unfolding model!

The perfect unidimensional unfolding model for

complete rank orders of preference

In this section I wiU first simimarize some basic

ideas behind unfolding analysis, by using an

example from Meerling (1981). In an

investigation by Ritzema and Van de Kloot,

preference rank orders were collected for the

following statements:

: People can be changed in any conceivable

direction, provided that the environment is

manipulated in the proper way (O =

omgeving, envirormient);

1 : The major condition for people to change

is for them to have a clear understanding of

their situation (I = inzicht, understanding);

E : Behaviour is determined much more
strongly by emotions than by rational

considerations (E = emoties, emotions);

A : Inborn characteristics determine to a large

extent what kind of person someone becomes

(A = aangeboren, inborn).

These four statements were shown to

psychologist colleagues, and the following six

types of preference rank orders were foimd:

OIEA. lOEA. lEOA, HOA. EAIO, and AHO.

In applying the unfolding model we assume that

there is a latent dimension on which each of

these statements can be represented. Meerling

suggests for these statements and these

preference rank orders that a 'nurture-nature'

dimension may be appropriate, in which the

statements are arranged in the order OIEA.

When the location of each of the statements on
this dimension is established, the dimension can

be divided into two areas for each pair of

statements (I,J): the first area, in which the first

statement is preferred over the second, and the

second area, in which the second statement is

preferred over the first The boundary between

these two areas lies in the middle between these

two stimuli, and is called the 'midpoint of the

pair of stimuli', m(IJ). This midpoint allows us

to locate individuals who give their preference

rank order along this dimension. An individual,

PI, who prefers statement O to statement I will

be located to the left of midpoint m(OI),

whereas another individual, P2, who prefers

statement I to statement O, will be located to

the right of that midpoint (see Figure 1)

Figure 1

Midpoint m(OI) divides the dimension

areas

into two

PI ; P2
! 1

m(OI) I

The four statements, together, have six

midpoints. These divide the dimension into

seven areas, the areas that are separated by the

midpoints. Each of these areas is characterized

by a special preference rank order, and is called

an 'isotonic region', (see figure 2)
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Figure 2

4 stimuli, 6 midpoints, and 7 isotonic areas or

subject types

A subject is usually represented on the scale by

a single point, called his 'ideal point'. The
preference order of the subject is called his

'Individual scale', or 'I-scale' for shorL The
representation of all subjects and all stimuli

jointly on the same dimension is called the

'Joint-scale', or 'J-scale' for short The I-scale

gives the order of the stimuh in terms of their

distance from the ideal point of the individual.

In other words: the I-scale has to be 'unfolded'

at the ideal points to produce the J-scale.

Unfolding analysis is designed to find a joint

representation of stimuli and subjects in one

dimension, that is, to find a unidimensional

J-scale on the basis of the preference rank

orders of the individual 1-scales. Finding a

J-scale brings us two things. The first is an

unfoldable order of the stimuli which can

generally be used to infer the criterion used by

the subjects in determining their preference

order (e.g., the nurture-nature criterion).

Secondly, having a J-scale allows us to combine
a subject's answers to the n survey questions in

a single rank order which can be used to

measure the preference of the subject in terms

of his ideal point on the criterion dimensioiL

By measuring a subject's preference in this way
we can create a new variable which can be

related to other characteristics of the subject

The purpose of creating such a new variable is

to try to explain why people differ in their

preferences, or to explain other attitudes or

behaviours on the basis of scale values on the

J-scale.

If we have perfect data, such as we usually find

in textbooks on scaling (and by perfect data I

mean I-scales that can be perfectly represented

in a unidimensional unfolding scale) it is no

problem to find the J-scale that represents the

I-scales. Problems only arise when the data are

not perfect, which is in most cases. The major

reason why the unfolding technique has so far

been relatively unpopular and why it has as yet

not been incorporated into most standard

statistical packages, is that up to now we have

not been able to imfold imperfea data in a

satisfactory way. If we could find a usable

unfolding technique, interest in it should be

great, since the model is plausible, and there is

a great deal of interest in measuring the

preferences of subjects.

Discussion of some alternative proposals for

unfolding models

Before introducing my own model, I will first

consider five strategies that have been developed

in the literature and which attempt to find

useful and interpretable unfolding results. These

strategies are all derived from a description of

the ideal type of unfolding analysis, namely the

perfect representation of a complete rank order

of preferences in a unidimensional space, in

which all stimuli and all individuals can be

represented. These five strategies are:

1. Analyze the I-scales after they have been

dichotomized into the k most preferred and

n-k least preferred stimuli;

2. Relax the criterion of perfect representation

to allow stochastic representation;

3. Find a representation in more than one

dimension;
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4. Find a representation for a maximal subset

of the stimuli;

5. Find a representation for a maximal subset

of the subjects.

The first strategy is to dichotomize full or

partial rank orders of stimuli into the k most

prefened and the n-k least preferred stimuli.

The unfolding analysis of such data,

parallelogram analysis, can be defended with the

argument that the stimuli a subject prefers most

will be the most salient ones for him, and a

subject will therefore be able to single them out

more rehably than the remaining ones.

Moreover, although the imfolding model

assumes that successively chosen stimuli are in a

sense substitutes for the subjects' most preferred

stiumlus to a deaeasing degree, graudally, in

the course of giving a full rank order of

preference, a subject may begin to use other

criteria. Coombs (1964) talked about the

'portfoUo model* in this respect, and Tversky

(1972, 1979) suggested an 'Elimination by

Aspects' model, in which different criteria for

preference are hierarchically ordered. If we are

interested in finding the dominant criterion that

is used first by all respondents, then we should

restrict ourselves to analyzing only the first few

most preferred stimuli, lest we run the risk of

introducing idiosynaatic noise.

Two more practical advantages of this strategy

can be mentioned. First, if applying an

unfolding model in which the distinction

between the k most preferred and n-k least

prefered stimuli does not lead to a good-fitting

representation, it is no use trying more
sophisticated models that require the full rank

order, or that may even require metric

preference information. Second, the unfolding

of dichotomous data implies that essentially all

types of data can be used in a preference

analysis, as long as the most preferred responses

can be distinguished from the others.

The second strategy is to relax the criterion of

perfect representation to allow stochastic

representatioa I regard it as obvious that

preference judgments reflect so many
idiosyncratic influences, that we should be

happy to fmd that a rather heterogeneous group

of subjects agrees on at least a dominant

criterion. Stochastic models have been proposed

before (SixU, 1973; Zinnes and Griggs, 1974;

Bechtel, 1976; Jansen, 1981). I regard tiiese

proposals as inferior to the model 1 propose for

at least two reasons. Firstiy, many of the

probabilistic unfolding models assume that the

order of stimuh along the J-scale is already

known, and only parameter estimation of

subjects and stimiili on the basis of the known
order is needed. In many cases such an

approach is begging the question, as often the

order of the stimuli is not known in advance.

Secondly, other stochastic unfolding models

require that for each subject, we need the

probability of his preferring one stimulus to

another. In many practical applications this

information is impossible to obtain: it is

expensive and time consuming enough to ask

respondents one single time to compare all pairs

of stimuli with respect to preference.

A third strategy to analyze data that are not

unfoldable in one dimension is to try to

represent them in more than one dimension. It

is possible that subjects did not use a single

criterion in making their preference judgments,

they may instead have used two or three

criteria simultaneously. Multidimensional models

have been proposed by Bennett and Hays

(1960), Roskam (1968), SchOnemann (1970),

Carroll (1972), Young (1972). Gold (1973),

Kruskal et al (1973), and Reiser (1981), among
others. They are appealing, because the use of

more than one dimension implies the possibility

of using a number of additional models that

differ in the way in which the various

dimensions are combined: the vector model, the

weighted distance model, or the compensatory

distance model, to mention only a few.
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There are at least four possible problems with

the multidimensional unfolding model. First, in

applying a nonmetric multidimensional unfolding

model, we may fmd an almost degenerate

solution, in which most subjects are close

together in the centroid of the space, and most

stimuli lie in a circle around iL Secondly, also

with respect to nonmetric multidimensional

unfolding, there is a fundamental difference

between the nonmetric analysis of similarities

data and the nonmetric analysis of preference

data, even though both models are based on the

same principle. In the multidimensional analysis

of siniilaiities, the isotonic region in which a

stimulus falls becomes so small that for a

sufficient number of stimuh each stimulus can

only be represented by a point in the space,

rather than by a region. But in

multidimensional unfolding, the representation of

some respondents in the form of such isotonic

regions is different; some isotonic regions do

not shrink to points, but remain open. Such

respondents cannot be uniquely represented by

one point in the space. Thirdly,

multidimensional unfolding assumes that all

dimensions are used simultaneously, rather than

in a hierarchical order. This is an empirical

question, rather than an untestable assumptioa

Fourth, the assumption that all dimensions are

appropriate for all stimuli is equally an

empirical question, rather than an untestable

assimiption.

We are told that reality is not unidiraensional.

Indeed, a chair has a colour, a weight, and a

nimiber of sizes. A person has an age, a sex,

and a preference for certain drinks. And a

pohtical party may be large, religious and right

wing. Still, we never analyze reaht>'. We
analyse aspects of reality! We do not compare

chairs, subjects or political parties, but sizes of

chairs, ages of subjects and ideological positions

of political parties. That objects or subjects

have more aspects than the ones in which we
are interested, does not at all imply that our

analyses need to be multidimensional. They

may be, but that is an empirical question, and

not an untestable assimiption from the outset I

do not fundamentally object to a

multidimensional representation of the

preferences of a group of subjects. There may
be instances in which this is indeed the best

model. But the utility of different models will

have to be shown in their practical applicability.

With respect to the last two strategies for

salvaging the imfolding model, selecting a

maximal subset of stimuh and selecting a

maximal subset of subjects, it is estabhshed

practice in multidimensional unfolding analysis

to assign stress values to subjects. This implies

that any difficulties in fmding a representation

can be explained by pointing at suljjects who
used different criteria, or who perhaps even

behaved completely at random. A possible

procedure, given this assumption, is to delete

respondents whose stress values are too high.

However, it may be the case that large stress

values occur because one or more stimuli caimot

be represented since they do not belong in the

same imiverse of content as the other stimuli.

Subjects are allowed to differ in their evaluation

of the stimuh, but for unfolding to be

applicable, they must agree on the cognitive

aspects of the stimuh; whether gentlemen prefer

blondes or brunettes is a different matter from

estabUshing whether Marilyn is blonde or

brunette. If there is no agreement among the

subjects on the characteristics of a stimulus,

differences in preference will be difficult to

represent

Often, subjects are selected as representatives of

a larger population. Deleting subjects lowers

the possibility of generalizing from a sample to

a population. Stimuli, on the other hand, are

often not so much a random sample of a

population of stimuli, but are more often

intended to serve as the best and most

prototypical indicators of a latent trait; we are

often not so much interested in the actual

stimuli, but rather in their implications for

measuring subjects along this latent trait This
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means that we generally can delete stimuli with

less harm that when we delete subjects.

The discussion of these strategies is intended to

justify the strategy adopted in the technique to

be described below, of finding a stochastic

representation of a maximal subset of stimuli

and all subjects in one dimension, using the

first few preferences of each subject

Unfolding dichotomous data: the concept of

'error'

We generally do not know in advance which

stimuli can be represented in an imfolding scale,

nor in which order they can be represented.

The approach used here is a form of

hierarchical cluster analysis, in which first the

best, smallest unfolding scale is found, and then

is extended by more stimuli, as long as they

continue to satisfy the criteria of an unfolding

scale. The smallest unfolding scale consists of

three stimuli, since it takes at least three stimuli

to falsify the unfolding model. If stimuli A, B,

and C form a perfect unfolding scale in this

order, then subjects who prefer A and C but

not B, do not exist For the unfolding scale

ABC the response patterns in which A and C
are prefened but B is not, is defined as the

'error pattern' of that triple of stimuli. But

since we do not know in advance in what order

the stimuli form an unfolding scale, we must
take into account the three permutations in

which each of the three stimuli is the middle

one: BAG, ABC, and ACB. If a subject prefers

A and B, but not C, for example, he makes an
enor according to the unfolding scale ACB.

For each triple of stimuli, given a dichotomous

response to each stimulus, eight response

patterns are possible: 111, 110, 101, Oil, 100,

010, 001, and 000. If these stimuli form pan of

an unfolding scale, then one of these eight

patterns cannot occur: the pattern '101' (see

Table l)^ This pattern is called the 'error

response'.

For each triple of stimuli, in each of its three

possible permutations, the frequency of

occurrence of the error pattern can be counted.

Counting frequencies of enor response patterns

can be extended to larger response patterns, in

which each subject evaluates more stimuli.

Table 2 gives five response patterns in which

two or three stimuli are preferred from a set of

four. In the first two response patterns only

one triple is in error. In the last three response

patterns two triples are in error. The amount
of error in a response pattern is defined as the

number of triples in that response pattern that

are in error. The last three response patterns

therefore contain twice as much error as the

first two.

In the second example, four subjects prefer six

out of seven stimuli. It makes an enormous

difference to the amount of error in their

response patterns whether the stimulus not

preferred is D, C, B, or A. In the case of D,

the amount of error is maximal, whereas in the

case of A there are no errors at all.

Stochastic unfolding

The stochastic aspect of the unfolding strategy

proposed here lies in comparing the amount of

error observed with the amount of error

expected under statistical independence. In the

deterministic unfolding model, the k stimuli that

are preferred by a subject are found within the

symmetric closed interval around the subject's

ideal point The probability of preferring a set

of stimuli (e.g., two, three, or more) will be '1'

if all stimuli fall within the subject's preference

' Editor's note: Tables are gathered together at

end of article
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interval, and '0' if at least one stimulus falls

outside this interval.

The null model differs from the deterministic

model in two ways. First, local independence is

assumed among preference responses for

different stimuli. This means that for each

subject the probability of a preference response

pattern to a set of stimuli is the product of the

positive (preferential) response to each of the

stimuli. Second, the null model assumes that

there are no individual differences in the

probabilities of giving a positive preference

response to the stimuh. The expected frequency

with which a set of stimuli is preferred will

therefore be the product of the relative

frequencies with which each stimulus is

prefened times the number of cases, if subjects

are free to selea as many 'most prefened'

stimuli as they wish:

Exp.Freq(ijk,101) = p(i).(l - pO)).p(k).N

where p{i) is the relative frequency with which

stimulus i is preferred and N is the number of

cases.

The expected number of errors under the null

model for 'pick k/n' data is first explained for

'pick 3/n' data. It consists of two steps:

1. determine the expected frequency of the

'111' response pattern by applying the n-way
simple quasi-independence model (e.g.,

Bishop et al, 1975);

2. from the '111' responses to each triple, other

response patterns - like 110, 101, or Oil -

cjm be deduced.

In a data matrix, in which each of the N
subjects picks exactly 3 of n stimuli as most
prefened, the relative frequency p(i) with which

each stimulus is picked can be found. In the

null model, these p(i)'s are derived from the

addition of the expected frequency of triples

(ijJc) for all combinations of j and k with a

fixed i. This expected frequency of triples ijjc,

a(ijk), is the product of the item parameters f(i),

f(j), f(k) times a general scaling factor f. without

interaction effects: a(ijk) = f fi;i).flj).f(k). The
values of f, and each f(i) are found iteratively.

(see Table 3) The details of this procedure are

given in Van Schuur (1984).

Once the expected frequency of the '111'

pattern of all triples is known, the expeaed
frequency of the other response patterns can be

foimd, given that each subject picked exactly 3

stimuli as most prefened. For example:

Consider the situation in which there are five

stimuli. A, B, C, D. and E, and each subject

chooses three stimuh as most preferred. For
the unfolding scale ABC the error response

pattern is the pattern 101, in which stimuh A
and C are picked, but stimulus B is not If B
was not one of the subject's choices, then D or

E must have been. We can therefore calculate

the expected frequency across all respondents of

the response pattern 101 for the triple ABC by
summing the expected 'HI' responses of the

triples ACD and ACE In general:

Exp.Freq.(ijk,101) = ff[i).n:k).I fi[s)

This procedure can easily be generalized to the

'pick k/n' case, where k = 2, or where k > 3.

First, the expeaed frequency of each k-tuple,

ranging between 1 and (") is found. Second,

the expected frequency oT the enor response

pattern of an unfolding scale of three stimuli is

foimd by calculating:

Exp.Freq.(ijk,101) = ff^i).fIk).Q

where Q is the sum over all (?_-) k-2 tuples

of the product of their f(s)'s, where s is not

equal to i, j, or k.

Once we know the frequency of the error

response observed, Obs.Freq.(ijk,101), as well as

the frequency expected imder the null model.
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Exp.Freq.(ijk,101), for each triple of stimuli in

each of its three essentially different

permutations, we can compare the two using a

scalability coefTicient analogous to Loevinger's H
(Loevinger. 1948; Mokken. 1971):

H... = 1 -
Obs.Freq.{iJk.l01)

Exp.Freq.(ijk,101)

For each triple of stimuli (ij, and k), three

coefficients of scalability can be found: H(ijk),

H(ikj). and H(jik). Perfect scalabihty is defined

as H = 1. This means that no error is

observed. When H = the amount of error

observed is equal to the amount of error

expeaed under statistical independence.

The scalability of an unfolding scale of more
than three stimuli can also be evaluated. In

this case we can simply calculate the sum of the

error responses to all relevant triples of the

scale, for both the observed and expected enor
frequency, and then compare them, using the

coefficient of scalability H:

3

J3 Obs. Freq. (i jk , 101 )

H = 1 _„iii>l=li

3

j; E;;p. Freq. (i jk , 101 )

< V jk= 1 >

MUDFOLD: Multiple Unidimensional

unFOLDing, the search procedure

After having obtained all relevant information

about each triple of stimuli in each of its three

different permutations (e.g., Obs.Freq.(ijk,101),

Exp.Freq.(ijk,101), and H(ijk), we can begin to

construct an unfolding scale. This is a two-step

procedure. First, the best elementary scale is

found, and second, new stimuli are added, one

by one. to the existing scale.

The best triple of stimuU that conforms to the

following criteria is the best elementary scale:

1. its scalability value should be positive in

only one of its three permutations, and

negative in the other two. This guarantees

that the best triple has a imique order of

representation;

2. its scalability value must be higher than

some user specified lower boundary. This

guarantees that if the scalability value is

positive, it can be given a substantively

relevant interpretation.

3. the absolute frequencies of the perfect

patterns with at least two of the three

stimuli (i.e.. Ill, 110, and Oil) is highest

among all triples fulfilling the first two

criteria. This guarantees the

representativeness of the largest group of

respondents.

The scalability of single stimuli in the scale can

equally be evaluated, by adding up the

frequencies of the enor patterns observed and
expected, respectively, in only those triples that

contain the stimulus under consideration, and
then comparing these frequencies using the

scalability coefficient for each stimulus

separately.

Once the best elementary scale is found, each

of the remaining n-3 stimuli is investigated to

determine whether or not it might make the

best fourth stimulus. The fourth stimulus (e.g.,

D) may be added to the three stimuli of the

best triple (e.g., ABC) in any one of four

places: DABC, ADBC. ABDC, or ABCD,
denoted as place 1 through place 4, respectively.

The best fourth - or, more generally.
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the

criteria:

p+l-st _ stimulus must fulfill the follOMdng

All new (P)
triples, including the p+l-st

stimulus and two stimuli from the existing

p-stimulus scale, must have a positive

H(ijk)-value. This guarantees that all stimuli

are homogeneous with respect to the latent

dimensioa

The p+l-st stimulus should be uniquely

representable, in only one of the p possible

places in the p-stimulus scale. This

guarantees the later usefulness and

interpretability of the order of the stimuli in

the scale.

The H(i)-value of the new stimulus, as well

as the H-value of the scale as a whole, must

be higher than some user-specified lower

boimdary (see second criterion for the best

elementary scale).

If more than one stimulus conforms to the

criteria mentioned above, that stimulus will

be selected which leads to the highest overall

scalability value for the scale as a whole.

The dominance and adjacency matrices: visual

inspection of model conformity

Once a maximal subset of unfoldable stimuli is

found, a final visual check of model conformity

can be performed by inspecting the dominance

and adjacency matrices. The dominance matrix

is a square, asymmetric matrix which contains in

its cells (ij) the proportion of respondents who
preferred stimulus i but not stimiJus j. If the

stimuh are in their order along the J-scale, then

for each stimulus i the proportions p(ij) should

decrease from the first column toward the

diagonal and increase from the diagonal to the

last column. The adjacency matrix is a lower

triangle that contains in its ceUs (iJ) the

proportion of respondents who preferred both i

and j. If the stimuli are in their order along

the J-scale, then for each stimulus i the

proportions p(ij) should inaease from the first

column to the diagonal and deaease from the

diagonal to the last row. This pattern is called

a 'simplex pattern*. Stimuli that disturb these

expected characteristic monotonidty patterns

should be considered for deletion from the

scale.(see Table 4).

This procedure, of extending a scale with

additional stimuli, can continue as long as the

criteria mentioned above are met If, however,

no stimulus conforms to these criteria, the

p-stimulus scale is a maximal subset of

unfoldable stimuli. A new procedure then starts

which begins by selecting the best triple among
the remaining n-p stimuli. This procedure, in

which, for a given pool of stimuli, more than

one maxima] subset of unidimensionally

unfoldable stimuli can be found, is called

'multiple scaling'.

Scale values

Once an unfolding scale of a maximal subset of

stimuli has been found, scale values for stimuli

and subjects must be foimd. The scale value of

a stimulus is defined as its rank number in the

unfolding scale. The scale value of a subject is

defined as the mean of the scale values of the

stimuli that the subject chose as most preferred.

Subjects who did not pick any stimulus from

the scale cannot be given a scale value, and

must be treated as missing data. An example of

the assignment of scale values is shown in

Table 5.
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Respondents may have different response

patterns, but be assigned the same scale value.

This can be seen by comparing subjects 1, 2.

and 3. Subjects 4 and 5 show that a scale

value for a subject does not need to be an

integer value. Respondent 6 shows that a scale

value is assigned to a subject regardless of the

amount of error in his response pattern, which

in his case is maximal. Subject 7 does not pick

any of the 7 stimuli and therefore cannot be

represented on this scale.

An example: Pick the 2 most sympathetic of 6

European party groups

As part of the Middle Level Elite Project (e.g..

Van Schuur, 1984), sympathy scores for six

European party groups in the European

Parliament of 1979 were elicited from party

activists from 50 political parties in the

European Community. The responses of 1786

subjects about their two most sympathetic party

groups were analyzed. The six party groups are,

with the letter by which they will be denoted,

and with the frequency with which they were

mentioned as sympathetic in brackets:

A: Communists (359); B: Social Demoaats
(747); C: European Democrats for Progress

(366); D: European Liberals and Demoaats
(662); E: Christian Democrats (792); and F:

Conservatives (646).

The frequency with which each pair of parties

was mentioned as most sympathetic is: AB(341)

AC(9) AD(3) AE(2) AF(4) BC(106) BD(202)
BE(86) BF(12) CD(124) CE(50) CF(77) DE(217)
DF(116) EF(437).

On the basis of this information, a labeled

matrix can be constructed that contains, for each

triple of stimuli in each of its three essentially

different permutations, the values

Obs.Freq.(ijk,101), or E(o), Exp.Freq.(ijk,101), or

E(e), and H(ijk). This information is given in

Table 6.

Table 6 provides all the necessary information

for constructing an unfolding scale. First, the

best elementary imfolding scale is found among
those triples that have a positive scalabihty

value in only one of its three permutations.

This leaves the ordered triples ABC, ABD,
BCF, BDE, CDE, DCF, CFE, and DEF. Triple

ABD is the best triple, since the sums of the

pairs (A3) and (Bj)) is highest. The H-value

of triple ABD is 0.96, which is well above the

recommended default user specification of 0.30.

On the basis of scale ABD, stimulus C cannot

be represented in this scale in any position,

since the triple B,CJ) has negative H-values in

all three permutations. Stimulus E is uniquely

representable in place 4, forming scale ABDE,
whereas stimulus F is representable in either

place 1 (scale FABD) or place 4 (scale ABDF).
Stimulus E is selected because it is the only one

uniquely representable. The four-stimulus scale

is ABDE, its H-value is 1 - 93/485 = 0.81.

which is acceptably high. For the best fifth

stimulus, we need only consider stimulus F.

This is now only representable in place 5, which

gives the final scale ABDEF. Its H-value is

1 - 245/1185 = 0.79.

In the process of scale construction, the

H-values of individual stimuli are also

calculated. For the triple ABD these values are

the same: H(A) = H(B) = H(D) = H(ABD) =

0.96. For the four- and five-stimulus scales

these values must be computed separately. The

resulting H-values for the final scale are shown
in Table 7, along with the dominance matrix

and the adjacency matrix for the stimuli in the

order of the final scale. Neither matrix shows

any violation of the expeaed characteristic

monotonicity pattern.

Five of the six European party groups can be

included in an unfolding scale based on party
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activists' sympathy scores for these party groups.

The scale can be interpreted as a left-right

dimension, with the Communists represented in

the left-most place and the Conservatives in the

right-most place. To corroborate this

interpretation, I have correlated subjects' scale

scores for this imfolding scale with their scores

on a left-right self-placement scale. This

correlation was 0.66.

The European Demoaats for Progress (EDP,

stimulus C) was not incorporated in the scale.

This party group consists of the French

Gaullists (RPR), the largest Irish party Fiaima

Fail (FF). and the Danish Progress Party (FRP).

This party group is not represented in many EC
countries, so it is probably less well know than

other party groups, and did not, therefore,

receive high sympathy scores from respondents

who might have been expected to be

sympathetic, based on their positions on the

scale.

Concluding remarks

The procedure described above for the analysis

of 'pick k/n' data can be extended to apply to

'rank k/n' data. Such procedures have been

independenUy proposed by Davison (1978) and

by Van Schuur and Molenaar (1982). Using

partial rank order information might provide

more precise measurements for both the stimuli

and the subjects. However, since in this

procedure all six permutations of a triple of

stimuli have their own observed and expected

error patterns, the accuracy of estimation with

the same data set decreases sixfold. As table 7

already shows, the H(ijk)-value of some triples

is based on a comparison of rather small

numbers, and such comparison will therefore be

even more difficult in the 'rank'-case.

Moreover, for small k the increase in

measurement precision is minimal, and 1 have

already expressed some doubts about the

rehability of the k-th preference judgment,

when k gets large.

A computer program (MUDFOLD) has been

devised to perform a multiple unidimensional

unfolding aiialysis on complete or partial rank

order data, 'pick k/n' or 'pick any/n' data, or

on the usual attitudinal data, such as Likert

items or thermometer scores. The program is

interactive, self-explanatory, and very

user-friendly. The user may define a startset

rather than use the best elementary scale to

find a larger unfolding scale, or test the

unfoldability of a given set of stimuli in a given

order. In either case, if a triple of stimuli in

the user defined order has a negative

H(ijk)-value, this triple will be flagged, along

witii its E(o>-, E(e)-, and H(ijk)-values. The
output not only consists of the H- and

H(i)-values of the final scale, but also gives an

overview of which stimuh at which places were

candidates for selection at what step of

enlargement, and the H- and H(i>-values of the

stimuh in the scale at which step of

enlargement Moreover, the output contains a

variety of additional information which may
help the researcher either find a better scale, or

explain why certain stimuh did not fit in the

unfolding scale. The computer program is

available from the University of Groningen.

The development of the unfolding model
presented above, together with more than

twenty applications, is described in more detail

in my dissertation (Van Schuur. 1984).Q
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Table 1

Table 1: parallelogram analysis of perfect 'pick 3/11' data

1 : subject prefers stimulus

O: subject does not prefer stimulus

subjects

:

stimuli

:

123456789
-I I I 1-

ABCDEFGHIJK
subject nr. response pattern:

1 11100000000
2 01110000000
3 111
4 111
5

' 111
6 111
7 111
8 00000001110
9 00000000111

Table 2

Table 2: Two examples of response patterns that contain error

Example 1: Example 2:

A B C D Error in triples A B C D E F G Error in triples

1110 111 ADE ADF ADC BDE BDF BDG CDE CDF CD

110 1111 ACD ACE ACF ACG BCD BCE BCF BCG

10 11111 ABC ABD ABE ABF ABG

111111 none

10 10 ABC

10 1 BCD

10 1 ABD ACD

110 1 ACD BCD

10 11 ABC ABD
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Table 3

Table 3: Observed data matrix and matrix with expected frequenc

Observed data matrix:

stimuli: SUM

subjects: A B E ...i j k ...n

1 1110 3

2 110 1 3

N 10 10 1

p(i\) p(B) p(£:) p(D) p(i) p(j) p{k) p(n)

Matrix with expected frequencies :

stimuli:

triples: A B C D ...i j k ...n

(^«^) ^ABC ^ABG ^ABC ° a^^
(^^^ ^ABD ^ABD ° ^ABD

a^^

(ijk) a. j^ a..^ a..^

(3)

p(A) p(B)-'pTC) p(D) p(i) p(j) p(k) p(n)

ijk
: expected frequency of triple (ijk)

= f .f (i) .f
( j) . f (k) (i.e., no interaction)

"ijk
The values for f and f(i) are found iteratively
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Table 4

Table 4: Dominance and adjacency matrix for a perfect

4-stimulus unfolding scale

Data matrix

A B C D frequency

1 p

1 q

1 r

1 s

1 1 t

1 1 u

1 1 V

1 1 1 w

1 1 1 X

Dominance matrix:

A B C D

A P p+t p+t+w

B q+u+x - q+t q+t+u+w

C r+u+v+x r+v - r+u+w

D s+v+x s+v s -

Adjacency matrix

A B C D

A

B t+w -

C w u+w+x -

D X v+x -

Table 5

Table 5: Assignment of scale values to stimuli and subjects

stimuli

rank number

subject nr

.

1

2

3

4

5

6

7

A B C D E F G

12 3 4 5 6 7

1 1 10
10

10 10 10
1 10

10 1 1

1110 111

scale value of subject

3

3

3

2.5

5.67

4

- (missing datum)
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Table 6
Table 6: Labeled H-matrix for 'pick 2/6' European party groups,

Scale jik Scale i]k Scale1 ik3

E(o) E(e) H(ijk) E(o) E(e) H(ijk) E(o) E(e) H(ijk)

ABC 106 88 -0.21 9 36 0.75 341 86 -2.97

ABD 262 177 -0.14 3 73 0.96 341 86 -2.97

ABE 86 226 0.62 2 93 0.98 341 86 -2.97

ABF 12 171 0.93 4 71 0.94 341 86 -2.97

ACD 124 75 -0.66 3 73 0.96 9 36 0.75

ACE 50 95 0.4 8 2 93 0.96 9 36 0.75

ACF 77 72 -0.07 4 71 0.94 9 36 0.75

ADE 217 192 -0.13 2 93 0.98 3 73 0.96

ADF 116 146 0.20 4 71 0.94 3 73 0.96

AEF 437 186 -1.35 4 71 0.94 2 93 0.98

BCD 124 75 -0.66 202 177 -0.14 106 88 -0.21

BCE 50 95 0.48 86 226 0.62 106 88 -0.21

BCF 77 72 -0.07 12 171 0.93 106 88 -0.21

BDE 217 192 -0.13 86 226 0.62 202 177 -0.14

BDF 116 146 0.20 12 171 0.93 202 177 -0.14

BEF 437 186 -1 .35 12 171 0.93 86 226 0.62

CDE 217 192 -0.13 50 95 0.48 124 75 -0.66

CDF 116 146 0.20 77 72 -0.07 124 75 -0.66

CEF 437 186 -1.35 77 72 -0.07 50 95 0.48

DEF 437 186 -1.35 116 146 0.20 217 192 -0.13

Table 7

Table 7: Final unfolding scale for 'pick 2/6' European party groups

A Communists

B Social Democrats

D European Liberals and Democrats

E Christian Democrats

F Conservatives

Dominance matrix Adjacency matrix

p(i) H (i)

0.20 0..96

0.42 0,.85

0.37 0,.71

0.44 0..72

0.36 0,.79

N=1786 H = .79

A B D E F

A -
1 19 19 19

B 17 - 25 31 35

D 30 19 - 18 24

E 41 37 29 - 17

F 32 31 25 7 -

17 -

11 -

5 12

1 6
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