
Distributed Database Systems

by RaymondBoard

'

Division ofResearch and Statistics Federal

Reserve Board Washington, DC 20551

abstract

A distributed database system is a collection of logically-

related databases that are connected by a communica-

tions network, together with a software system for

managing and accessing the data. A distributed database

system is designed so that it appears to the user to be a

single, unified database.This paper reviews the advan-

tages and disadvantages of distributed database systems,

and discusses issues relevant to their design and use.

These issues include concurrency control, distributed

query processing and transaction management, disaster

recovery, reliability, and methods for distributing data.

Background
Much social science research involves the use of large

datasets. These datasets are usually shared among many
researchers, each of whom periodically wants to read,

update, correct, and add to the data. Managing such

datasets presents significant problems, and maintaining

them is not an easy task. Frequently, specialized com-
puter software systems, known as database management
systems, are used to handle large datasets accessed by
multiple users.

A recent trend in computing has been to move away from

the traditional mainframe environment toward a distrib-

uted computing environment. In a mainframe environ-

ment, all users share the same large, powerful computer.

In a distributed environment, many computers— usually

smaller machines such as personal computers (PCs) —
are linked together by a communication network. Such
networks can connect users working on different types of

machines and in different locations.

This paper discusses an emerging computer technology

that is intended to solve many of the problems associated

with large datasets. This technology, called database

management systems], takes advantage of a number of

the benefits offered by distributed computing environ-

ments. As this is a relatively new technology, the reader

should note that not all of the features of distributed

database systems are currently available in commercial
products. Building such systems is a very active area of

computer science research; although network database

systems with many of the features herein described are

already on the market, a complete disu-ibuted database

management system is still a few years away. Our

discussion will be of a general nature; in particular, we
will not discuss different data models, such as hierarchi-

cal, graph-based, and relational, currently used by

database management systems.

Database Management Systems

A database is an organized collection of data stored on a

computer system. A database management system,

abbreviated as DBMS, is a software system for manag-

ing and accessing a database. These systems are typically

used to manage data that is^ accessed by applications

programs (e.g. packages for statistical analysis), or to

answer direct user queries.

It is certainly possible to store data in ordinary files in a

computer's file system; in fact, for small datasets that are

needed by only a single user, this is often the most

practical solution. But for large datasets, and particularly

those datasets that are accessed by multiple users, this

practice has a number of drawbacks. DBMS', on the

other hand, are designed specifically to handle these sorts

of situations, and to overcome the limitations presented

by using ordinary files.

In particular, DBMS' are designed to handle large

datasets that are accessed (often simultaneously) by

many users, for both reading and writing. These datasets

are usually of critical importance to the user, so protect-

ing the accuracy and integrity of the data stored in them

is of paramount importance. Some of the crucial issues

that must be dealt with by a DBMS include the follow-

ing:

* What should be done if more than one person wants

to access the data at the same time?

* What happens if one person is changing data at the

same time someone else is reading it?

* Is the data safe if the system crashes? What if

someone was making changes to the data when it

happened?

* How can the data be accessed quickly, even when
the dataset is very large?

These are some of the problems that a database manage-

lASSlST Quarterly

ment system must address.

Network Computing
In recent years there has been a strong trend toward

replacing mainframes with networks of smaller comput-

ers. The most common such arrangement is a local- or

wide-area network that connects a collection of personal

computers or workstations'. This migration is largely the

result of the more favorable price/performance ratios

currently offered by PCs and workstations. The lower

cost is partly due to the high servicing expenses (usually

provided by the vendor) required by most mainframes;

PC maintenance can frequently be handled by the cus-

tomer herself. The main reason, however, is the low

prices resulting from the intense competition among PC
and workstation manufacturers. Furthermore, the explo-

sion in the number of these machines now in use has led

to the availability of a wide range of application software

to run on them. The proliferation of these smaller com-
puters has put computing power and data closer to their

end-users, often right on their desktops.

Another factor contributing to the spread of network

computing environments is the growing popularity of the

UNIX operating system. UNIX is particularly well-suited

for networking, so its increased use has encouraged the

implementation of network computing environments.

Unlike the case with mainframes, data storage and

processing are distributed in a network environment. Data

can be stored at many different sites on the network, and

computation can be performed on the machines best-

suited to the individual tasks. Network file systems can

make data location-transparent to users, so that they don't

have to know where the data they're using actually

resides. Through the use of remote procedure calls, the

same can be true of computation. Software can be

implemented so that users need not know which machine

is running their applications.

Distributed Database Systems}

The popularity of network computing environments has

led to the development of distributed database systems. A
distributed database is a collection of logically-related

databases that are connected by a communications

network. A distributed database management system (or

distributed DBMS) is a software system for managing and

accessing a distributed database. A distributed database

system consists ofa disuibuted database and its associated

distributed DBMS. The distributed database system is

designed so that it appears to the user to be a single,

unified database. Typically, the data stored by a distrib-

uted database system is spread across a number of

computers on the network. The data is disu-ibuted with

the two following considerations m mind. First, data

should be stored close to the machines that are most

likely to run applications that use it, thus minimizing

network traffic. Second, the amount of data stored on the

different computers should be well-balanced, to even out

the data processing load and thus eliminate potential

bottlenecks.

A distributed DBMS differs from a network file system

in that its data is logically structured and is accessed by

means of a high-level software interface. This interface is

written so as to control concurrent access to the data and

ensure data integrity. The data in a network file system is

only organized into files, and can only be retrieved as

files. Note also the disunction between "distributed

databases" and "distributed processing". The former

refers to spreading databases across two or more comput-

ers, while the latter refers to spreading processing across

multiple computers. Distributed database systems

typically perform distributed processing, but the two

terms are not equivalent.

The client-server model
An increasingly popular network database configuration

is the client-server architecture. This refers to a network

computing environment in which one or more machines

function as database servers. These computers store the

data and manage all database operations. Other ma-

chines, known as clients, run application programs.

When a client application needs to read or write to the

database, it sends an appropriate request to a server. The

server processes the request and returns the result to the

cUent, which then resumes running its application.

It is important to point out that client-server database

architectures are not necessarily distributed database

systems. One reason is that there need not be more than

one server on a network; thus the data is not necessarily

distributed. Another reason is that the client-server model

does not require location transparency; in this model it is

acceptable to require that the user know where her data

resides on the network. In a distributed database system,

the actual location of the data should be transparent to the

user.

Client-server architectures are frequently used in network

computing environments, and not just for managing

databases. In addition to database servers, individual

machines often function as file servers or mail servers for

the network, handling client requests for those resources.

Issues

The questions — described above in Section Database

Management Systems— that "undistributed" DBMS'
must deal with are also important problems for distrib-

uted DBMS'. In fact, these problems become more

complex in a distributed environment. In addition, new

issues arise because of the distnbuted setting. We discuss

some of these issues in this section, and how they are

handled by distributed DBMS'.

Fall 1992

Concurrency control

Recall that one of the problems that any DBMS must

deal with is what to do when more than user wants to

access the same data at the same time. This can be

especially troublesome when one (or both) of the simul-

taneous users wishes to change or update the data in the

database. In the database world, these questions fall

under the heading of (^em concurrency control) . As its

name suggests, concurrency control means managing

concurrent access to data by multiple users. Two tech-

niques commonly used by DBMS's to provide concur-

rency control are data replication and locking.

In one common data replication scheme*, each user

wishing to access a particular set of data in the database

is given her own copy of the data. (The copy is transpar-

ent to the user; to her it appears as though she's working

with the database itself.) If she only wishes to read data,

then she only has to refer to her own copy. But if she

wishes to write to the database, all replicated copies

must be updated; otherwise, users who are also working

with that part of the database will no longer have an up-

to-date copy once she has made her changes. Thus each

time a user updates the database, all copies of that part of

the data that are simultaneously in use must also be

updated. This requires a lot of disk writes, which is a

slow operation. Thus system performance can suffer

under this sort of scheme. In a distributed DBMS, the

updates to all replicated data will cause an increase in

network traffic, in addition to disk operations. Thus the

performance degradation becomes even more of an issue

in a distributed DBMS.

An alternative technique often used to enforce concur-

rency control is locking. When an application program
(or a user making direct queries to the database) needs

access to a particular piece of data, it requests a lock— a

guarantee of temporary exclusive access— to that part

of the database. If another process has already been

granted a lock on that data, then the application program
must wait until that lock has been released. Thus at any

time, at most one process has access to any piece of data

in the database.

Locking has drawbacks also. The most obvious one is

that when multiple processes need access to the same
data, all but one of them must wait until they can obtain a

lock. This problem can be alleviated somewhat by
shrinking the granularity of the lock; that is, by making
the lock apply to only a very specific piece of data. This

makes conflicts less likely, but also increases system
overhead, since processes will have to request locks

more frequently. A similar tradeoff takes place when
data replication is used. If the granularity of the repli-

cated data is large, then the user needs to request addi-

tional data copies less frequently. However, this en-

hances the probability that she's working with data that

is out-of-date. Reducing the granularity, on the other

hand, increases the number of data retrievals required,

and thus the system overhead.

Another problem introduced by locking is the possibility

oi deadlock.. Suppose that two processes, P, and P^, are

running simultaneously, and both need access to both of

the data items d, and d^. Suppose further that P, requests

and is granted a lock on d,, while at about the same time

Pj requests and is granted a lock on d^. Now neither

process can proceed, since each is waiting for the other to

release its lock. This situation is called deadlock, and is

clearly something to be avoided. DBMS' typically have

subroutines that periodically check for this sort of

condition; if it's found, one of the deadlocked processes

is forced to relinquish its lock, so that the other process

can proceed.

Deadlock detection is more difficult in a distributed

DBMS, since the locks that the processes are competing

for may be at two different sites on the network. Since

each site typically handles the locks on its own data, it's

possible that neither of the two sites realizes that it's

waiting for a lock to be released on the other machine.

This stalemate situation is known as global deadlock, and

is much harder to detect, since there is no central program

managing all of the locks. Distributed DBMS' often

detect it by "timeout": Once a certain period of time has

elapsed without the locks being granted, a global dead-

lock condition is assumed to exist.

Concurtency control in distributed DBMS' is further

complicated by the possibility of communication or site

failure. A message relinquishing a lock may be garbled or

lost, or a computer may crash without releasing its locks.

Either of these situations results in dangling locks, which

are no longer needed but have not been released. Distrib-

uted DBMS' must have contingency plans for detecting

and dealing with these situations.

As an example of concurrency conU"ol, consider an airline

reservation system. This type of system is centered on a

large database that can be accessed by thousands of ticket

agents around the world. Clearly some sort of concur-

rency control is needed to prevent two agents from

simultaneously booking the same seat. When one agent

tries to reserve a seat, she is granted a lock on that seat.

The lock granularity should allow the agent to simultane-

ously lock two adjacent seals for a couple traveling

together, but also allow other agents to book other seats at

the same time.

Consistency

Maintaining database consistency is another important

issue. Consider a bank, and two customers (,4 and B) who
have accounts there. Suppose that A writes a check for

SI 00 to B, who deposits it in her account. Recording this

lASSIST Quarterly

transaction in the database thus requires two operations:

The balance in A 's account must be decreased by SI 00

and the balance in b"s account must be increased by the

same amount. But what happens if an accounting program

reads the balances after A 's account has been adjusted

but not B's? The accounting program will be told that

there is SlOO less in the bank than is actually the case.

The database will be in an inconsistent state.

To prevent this sort of inconsistency, DBMS' allow users

to group database operations into transactions. These are

sequences of database write operations that are treated as

a single unit; either all of the operations in the transaction

will be carried out (or committed), or else none of them

will be. Furthermore, no other changes will be made to

the database between the time the first operation in the

transaction is executed and the time that last operation in

the transaction is executed. In the banking example, the

DBMS would guarantee that the accounting program

could not gain access to the account information until

after the adjustments to both of the accounts were made.

The accounting program would thus see a consistent

version of the database.

In a distributed DBMS it is important that, in transactions

that affect data at multiple sites, either all of the sites are

updated or else none of them are. This is usually ensured

through the use of a two-phase commit protocol. In the

first phase, the machine initiating the transaction sends a

message to all of the sites that will be affected by the

transaction, asking them to verify that they are prepared

to commit the transaction. If each of these sites responds

positively, then the initial machine sends a second

message instructing the other sites to actually commit the

transaction. If not all of the sites respond positively,

perhaps because of a communication failure, then the

initial machine sends out a second message cancelling the

transaction at all of the sites. This ensures that each site

maintains a consistent version of the database. This type

of protocol requires a significant amount of system

overhead.

Disaster recovery

A very important issue is how to protect the integrity of

the data during a system crash. Normally, if the system

goes down in between transactions, there is no major

problem. This is because at the end of a transaction the

database will be in a consistent state (assuming that

transactions are managed as described above). Of greater

concern is the possibility that the system could crash in

the middle of a transaction. In this case, some of the

changes made inside the transaction may have been

executed (i.e. written to disk), but not others. Thus at the

time of the crash the database could be in an inconsistent

state. In the example above, if the system failure occurred

after A 's account was debited but before B's account was

credited, then the database would understate the bank's

deposits by $100.

DBMS' frequently address this problem, known as

disaster recovery, by keeping track of all transactions in

a log file. Then, in the event of a system crash, the log

file is read automatically by the DBMS (once the system

is funcuonal again) to see if any transactions were in

progress at the time of the failure. If there was such a

transaction, all operations in that transacUon that were

executed prior to the crash are "undone", so that the

database is returned to the (consistent) state it was in at

the time the transaction started. In a distributed database

system each site typically maintains its own log file.

Another common technique for guarding against system

failure is to make new copies of the disk pages where the

data to be updated resides. The transaction of)erations are

performed on the copy. When the transaction is com-
pleted, the updated disk page can be remapped to replace

the old data in the database in a single, atomic operation.

Query optimization

A primary goal of all DBMS' is to provide fast access to

information in the database, even when the database is

very large. The speed with which a DBMS can answer a

query from a user or an application program relies to a

considerable extent on the order in which it carries out

the database operations necessary to extract the requested

information. Thus to ensure efficient performance, a

DBMS must be able to opumize the execuuon of queries.

As a (rather simplistic) example of the importance of

ordering the operations wisely, consider the "Irish

presidents" problem. Suppose there is a database contain-

ing information on many thousands of current and past

US citizens, and a request is made for a list of all people

in the database who were both of Irish ancestry and

American presidents. One way to satisfy the request

would be to first retrieve all people in the database of

Irish ancestry, and then select from this (very large) list

those people who were also presidents. A much more

efficient way to generate the list would be to initially

retrieve all US presidents, and then select from this much
shorter list those who are also of Irish descent.

Many DBMS' allow precompilation of queries. That is,

if a certain type of query will be executed many times,

the user can compile it into an optimized form that can

then be used for all subsequent invocations; optimization

is thus performed only once. For ad hoc queries that will

only be executed once, the DBMS must perform the

optimization when the query is actually made. Since

optimization can be a time-consuming operation, a

tradeoff can arise between the time needed to perform the

optimization and the time saved by executing an opti-

mized version of the query. In these situations it may be

best to perform less extensive (and thus less time-

Fall 1992

consuming) optimization.

Query optimization is especially important for distributed

databases, particularly since individual queries may
involve data stored at more than one site. Communica-

tions overhead is a major concern in distributed environ-

ments, due to the relatively slow speed of network

communication relative to most other operations. Thus it

is important to optimize queries so as to minimize the

amount of network traffic, in terms of both the frequency

of communication and the size of the messages passed.

Global optimization, which takes into account communi-

cation limes between sites, is needed for maximum
efficiency, rather than just local optimization at each of

the database sites. Note that the more autonomous the

individual sites are, the harder this will be to do, since

effective global optimization requires that much informa-

tion on the distributed data be available in a central

location.

Data distribution A key aspect of the definition of a

distributed database system is that the data is disffibuted

among multiple sites on the network. The way in which

the data is distributed can dramatically affect system

performance.

The question of how data is to be distributed can be

divided into two pans,fragmentation and allocation.

Fragmentation refers to how the data is broken into

pieces. Once this has been determined, the data frag-

ments must be allocated to various sites on the network.

When large networks and databases are involved, finding

an optimal (or near-optimal) fragmentation and allocation

can be a very difficult problem. While it's important to

put data close to users, it's also crucial to distribute the

data so as to reduce netwoiic traffic, and to balance the

distribution in order minimize the chances of bottlenecks

appearing. Thus the frequency of access to the data

fragments must be considered. Also, the structure of

anticipated queries should be taken into account, with the

goal of reducing the number of queries requiring data

from multiple sites. A sound distribution design strategy

should take into account all of these issues.

In order to improve performance, the system designer

may wish to store multiple copies of some data frag-

ments, particularly the most heavily-used data. This can

result in frequently-accessed data being stored near many
or all of its users, as well as reducing contention for

individual copies of this data. The cost of such a strategy

is that this may incur substantial system overhead;

updates must be made to all copies of the replicated data,

resulting in more network traffic and additional concur-

rency concerns. The replicated data fragments will also

require more disk space.

Another important feature of a distributed database

system is that the data should be location-transparent.

That is, no matter how the data is fragmented and

allocated, the user shouldn't have to know how or where

it is stored. The interface to the distributed DBMS should

be such that a user, or an application program that

interacts with the database, views the distributed DBMS
as a single logical database. Note that location-transpar-

ency implies that when the data in the database is moved
around or restructured, existing application programs

won't have to be altered to adjust for the changes.

Heterogeneous networks A practical consideration of

some importance is that distributed DBMS' should be

able to work on heterogeneous networks. Here "hetero-

geneous" refers not only to computer hardware, but also

to the different types of network hardware, operating

systems, communication protocols, and even database

management systems that are commonly encountered.

The last of these is critical, since much of the cost-

effectiveness and usefulness of a distributed DBMS may
result from its ability to link together a number of

existing DBMS'.

A distributed DBMS that is able to run on a wide variety

of systems enables widespread sharing of data among
databases in environments like universities, where

different types of computer systems abound. Another

advantage to heterogeneity is that if a distributed DBMS
runs on many types of systems, then it's easier to add

existing databases to it. This way system administrators

can protect their investments in existing systems by

being able to integrate them into a larger system, rather

than having to replace them.

Hardware and protocol heterogeneity can be achieved

through the use of low-level communication interfaces

called gateways. Once these interfaces have been

established, there can still be communications problems

if the distributed database system links together different

types of DBMS'. Thus it may be necessary to translate

between the two (or more) different DBMS' query

languages. The software programs that translate DBMS
requests into alternative query languages and send them

to the appropriate sites are, confusingly, also known as

gateways. Note that in a distributed database system with

many different types of machines, protocols, and

DBMS', the number of gateways (of both types) required

can be very large. This problem could be ameliorated by

the adoption of industrj'-wide standards for such things

as data models, query languages, and concurrency

protocols. Such comprehensive standards, however, seem

unlikely to be established in the near future.

Advantages and Disadvantages

As might be expected, there are both advantages and

disadvantages to disunbuted database systems. Perhaps

the most obvious advantage is that such systems facilitate

lASSIST Quarterly

the sharing of data among large communities of users—
for example, among the faculties of different departments

in a university— using existing, possibly heterogeneous,

computer networks. Thus more users can have access to

more data, without having to know where or how the data

is actually stored.

User interfaces One advantage of a distributed DBMS
that can be very apparent to end users is the superior

variety of user interfaces available on PCs and worksta-

tions as compared with most mainframes. Graphical user

interfaces (GUIs), allowing multiple windows and (often)

bit-mapped displays, are commonly available on these

smaller machines, and greatly enhance the enjoyment and

productivity of the user. In a distributed database system,

the user can work with a GUI to access data stored

elsewhere on the network without having to learn and use

the less user-friendly style of command interface that still

exists on most mainframes.

Performance A related advantage is that computation-

intensive applications can be moved off of the database

server machine(s) and onto the users' individual PCs and

workstations. This takes some of the processing load off

of the servers, thus allowing all users faster access to

data. In a mainframe environment, user applications

compete with the DBMS software for the computer's

CPU. But by processing the data locally in a distributed

environment, greater processing capacity is achieved by

keeping many machines busy.

Another way that performance gains can be realized in a

carefully designed distributed database system is by

moving data closer to the people who use it By distribut-

ing data on the PCs or workstations of those most likely

to use it, not only do those users benefit from faster data

access, but other users benefit as well, due to the resultant

lightening of the load on the other database servers on the

network.

Note that, in addition to offering additional functionality

such as concurrency control and data consistency, a

distributed DBMS may also achieve better performance

than network file systems in certain applications. This is

because distributed DBMS' respond to queries, and thus

need only send over the network the data that satisfies the

specific query. In a network file system, however, only

files can be transferred across the network. Thus a much
larger amount of data than is actually needed by the

requester is likely to be sent, resulting in increased

communication time.

Incremental growth Distributed database systems also

facilitate the incremental growth of databases. New
machines, f)erhaps with new datasets mounted on their

file systems, can be incorporated one by one into a

distributed DBMS. Thus as the data to be stored outgrows

the existing systems, new machines can be added to

expand capacity. In a mainframe environment this type

of incremental growth is generally not possible; the entire

DBMS would have to be replaced with a new system, a

much more expensive solution. A related advantage of

distributed DBMS' is that they are well-suited for

handling (Nem legacy) systems. A legacy is a software

program that, although today it might not be the best

choice for its job, is so furoly entrenched in the user

community (because of years of use, hundreds of appli-

cations that invoke it, etc.) that it would not be feasible to

replace it. A legacy database system can be incorporated

into a distributed DBMS by making it one node in the

system. Applications requiring data from that DBMS
could still use it, while other programs and users could

use data stored on other machines on the network.

Reliability Robustness and reliability are other areas in

which distributed DBMS' display advantages. In most

cases, a failure at one or more sites on the network will

not crash the entire distributed DBMS. In a well-de-

signed disuibuted DBMS, not only the data but also the

control over query processing, concurrency, and disaster

recovery is distributed. Thus failure at one point will not

render the entire database system useless. Although some

data may be temporarily unreachable in the event of such

a failure, much of the data should still be accessible. In

addition, if the system is designed with careful replica-

tion of data on multiple sites, all users may be able to

continue working with no ill effects if part of the system

goes down.

Disadvantages The most telling drawback of distributed

DBMS' is probably the increased complexity of admini-

stering and maintaining the database. Instead of just

managing a single database, the database manager must

now also contend with the network, communications

software, data that is replicated on multiple machines,

and the backup and recovery of distributed data. There

are more possible points of failure, including the machine

requesting data, the network, and the machine hosting the

data. Testing new applications is harder, since there may

be many different combinations of client and server ma-

chines that users will want to run the applications on.

Software updates are more of a chore; instead of install-

ing an update on a single machine, database administra-

tors must ensure that all machines in the distributed

database system are running up-to-date software. Finally,

maintaining data security will be more difficult. There is

an inherent conflict between granting wider data access

to enable many machines on the network to use the

database, and restricting access to sensitive data. In

environments where sensitive data is stored, a careful

balance must be struck between these competing inter-

ests.

Another potential disadvantage is that poody imple-

Fall 1992

menled distributed DBMS' may exhibit worse perform-

ance than their centralized counterparts. A system with a

very high rate of transactions, and data that is not

distributed efficiently, could result in very heavy network

traffic. This traffic, combined with the overhead of the

software managing the distributed DBMS' network

communications, could cause communication delays that

overcome the expected performance gains described

above, and result in unsatisfactory performance. Thus

careful thought must be given as to how data is distrib-

uted and replicated among the machines on the network.

Concluding Remarks
Although fully-functional distributed database systems,

as described in this paper, are not yet a commercial

reahty, they appear to be a promising means of handling

large shared datasets in the near future. Systems with

many of the capabilities discussed are now available, and

distributed client-server databases have been installed at

a number of sites. Distributed DBMS' take advantage of

many of the features that have made network computing

environments increasingly popular. They distribute the

processing load, move the data closer to the people who
work with it, and allow cheap, incremental system

evolution.

One unknown aspect of distributed DBMS' is how well

the algorithms and protocols they use, such as two-phase

commit, will scale up as networks grow larger and

connect more and more computers. Further research is

also needed on data distribution strategies and on

improving transaction management and query processing

in a distributed environment. In spite of these obstacles,

however, the future of distributed database systems

seems bright, aided by the continuing growth in popular-

ity of network computing environments.

References

R. Dale. Client-server database: Architecture of the

future. Database Programming and Design, pages 28-37,

August 1990.

H. A. Edelstein. Lions, Tigers, and Downsizing. Data-

base Programming and Design, pages 39-45, March
1992.

B. Gold-Bernstein. Does Client-Server Equal Distributed

Database? Database Programming and Design, pages

52-62, September 1990.

M. Krasowski. Why Choose A Distributed Database?

Database Programming and Design, pages 46-53, March
1991.

D. McGoveran and C. J. White. Clarifying Client-Server.

DBMS, pages 78-90, November 1990.

M. T. \"{0}zsu and P. Valdurie. Distributed Database

Systems: Where Are We Now? Computer, 24(8): 68-78.

August 1991.

S. Ram. Heterogeneous Disu-ibuted Database Systems.

Compiuer, 24(12): 7-10, Decembet 1991.

A. Silberschatz and M. Stonebraker and J. Ullman.

Database Systems: Achievements and Opportunities.

Communications of the ACM . 34(10): 110-120, October

1991.

1. Presented at the lASSIST 92 Conference held in

Madison, Wisconsin, U.S.A. May 26 - 29, 1992.

2. In the computer science literature, "data" is invariably

treated as singular, rather than plural. This convention

will be followed in this paper.)

3. Workstation" here refers to a desktop computer,

usually intended for single user operation, that features a

faster processor, more memory, and a larger screen than

a PC. Most workstations are UNIX-based and offer

elaborate graphical user interfaces

4. This is known as the "read one, write all", or

"ROWA", protocol.

10 lASSIST Quarterly

