
4 IASSIST Quarterly Spring 2002 IASSIST Quarterly Spring 2002 5

this reason, evaluation was an important
component during the early stages
of development. The criteria we used
in these evaluations were robustness,
performance, and institutional support.
Robustness means how much of the realm
of all likely cases and circumstances
the item could handle. For software,
this concept includes its portability to a
variety of platforms and programming

languages. Performance means: first, has the item been
implemented at all? and secondly, how well, how simply,
and how quickly does the item work? Institutional support
is a measure of how committed organizations are to the
support and future development of the item in question.

Our second strategy for controlling duplication of effort
was the DRY principle, which is, as stated by Hunt and
Thomas, “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system”
(p. 27). That single representation is then used to generate
data products and even software used in the processing
and publishing of the data sets. The DRY principle has
helped reduce the amount of recoding and reformatting at
CPANDA, however imperfectly applied.

Evaluations
I and other CPANDA members spent a great deal of
time evaluating standards, practices and software for
possible adoption into our archive. They include: metadata
(codebook) format standards, standards for controlled
vocabularies to describe data sets, software for analysis
and archival management, full text indexing software, and
software used to create codebooks in the DDI format.

Case I: Codebook Formats
One of the first decisions made by our group was what
format to use to store the metadata for the data sets. The
choice was not difficult, and we immediately selected
the DDI format for the codebook presented to the users.
Its advantages are many and obvious. DDI uses XML,
which has many positive features. As far as robustness,
eXtensible Markup Language (XML) is well understood,
uniform and extensible. Regarding performance, there are
many applications designed to parse and process XML.
Institutional support for XML is strong, with many groups
working on using and improving the standard. The DDI

Abstract
Today, there are many customs, standards
and standard applications which groups
just beginning a data archive can choose
to adopt or not adopt. This presentation
discusses the strategies that the Cultural
Policy and the Arts National Data Archive
(CPANDA) team used in the development
of the archive, including the criteria by
which established standards and practices
were evaluated. The choices made by the team as they
worked to develop the archive will also be discussed.

Introduction
This past year, the CPANDA team undertook to design
and implement a new data archive. In developing a new
archive, one important consideration is to do so in a cost
effective way. Naturally, certain features are desired, but
one does not want to waste effort through unnecessary
duplication. Like everyone else, we want to get where we
want to go, without doing it the hard way.

The primary guiding principle, then, in our data archive
development was to design the archive with the features we
desired while limiting the amount of duplication of effort
required on our part. This is not a novel idea, but it is better
to have a sound idea than a novel one. Because we began
our archive development long after many other individuals
and groups, including many of you in this room, had
already done so, our first strategy was to evaluate earlier
efforts to see what we should adopt or build upon, and
what we should create ourselves. Our question was: Which
practices should be adopted, and which, like a Mark Twain
classic, are better talked about than enjoyed? Our second
strategy was to follow, as much as possible, the DRY
Principle as articulated by Andrew Hunt and David Thomas
(Hunt and Thomas, 2000, p. 26-28). DRY stands for “Donʼt
Repeat Yourself.” This principle states that you should
have only one canonical version of information about both
the data and the software, and that all other forms of the
information should be regenerated from the canonical form
and should be disposable. These are the strategies we used
for developing a data archive in a time when many other
efforts had already come before us.

The first strategy for controlling duplication of effort was,
not surprisingly, to try to build upon earlier efforts. For

by Vernon Leighton*

Developing a new Data Archive in a Time of
Maturing Standards

6 IASSIST Quarterly Spring 2002 IASSIST Quarterly Spring 2002 7

itself is robust in that it handles many different aspects
of data sets. It has institutional support through many
IASSIST members, including ICPSR, NESSTAR, etc.
These organizations are committed to supporting the DDI
and extending it to cover even more types of data sets.

Performance is one area where the DDI has problems.
Because of the richness of its cross-references and
structures, applications that use the DDI are easier to design
if they treat it as a static object. This object orientation
favors the use of tree representations of the document,
such as the Document Object Model (DOM) over event
driven representations, such as the Simple API for XML
(SAX). Because of the large size of these XML documents,
the use of built-in DOM methods for data retrieval can be
quite slow and can use a great deal of memory. In our own
operation, the naïve use of built-in DOM data retrieval
calls was unacceptably slow, and the use of superior data
management resulted in a 300-fold increase in performance.

For example, we have a program that pulls from each
variable in a codebook the text of the question in the survey
that relates to that variable. The question text is then loaded
into a relational database for search and retrieval functions.
If the function repeatedly obtained all variables through
the DOM method $codebook à findnode(“/codebook/
dataDscr/var”), the algorithm runs very slowly. We solved
the problem by creating a codebook object that loaded most
variable-level information sequentially during initialization
into a hash data structure. The repeated access to the
hash was up to 300 times faster than the DOM method as
implemented in libxml2.

Other formats that we could have chosen for variable level
metadata include the Triple-S format in XML (Hughes,
Jenkins and Wright, 2001), and a variety of proprietary
formats developed for individual software applications,
such as SPSS and SDA. All these formats suffer from a
lack of elements for bibliographic information about the
whole data set, lack a richness of structure for describing
many possible types of data set layout, lack tools to parse
them in many languages on many platforms and lack
institutional support to address those shortcomings and
extend them in the future outside of the groups that created
them. On the positive side, these formats tend to be based
on plain text, and can usually be parsed in a straightforward
manner. Because of their simplicity, some of them offer
greater processing speed than some implementations of the
DDI.

Skeleton in Closet
When I stated that we chose the DDI for our format to
present to users, I confess that I was misleading you. When
we began the project, we chose the Survey Documentation
and Analysis (SDA) software to manage the online analysis
of our data sets. At first, we had difficulty in getting XML
parsing tools with acceptable features loaded onto our

server. In order to get moving, we chose to represent the
variable level data initially in SDA̓ s DDL format.

The data set processing tools were designed so that the
codebook was an object accessed through a standard set of
methods. The codebook object was originally implemented
on top of SDA̓ s DDL format, and the XML DDI format
was generated by one of the programs as a transformation
of the DDL. Therefore, the authoritative XML version
of the codebook was not the canonical version used by
the archive software; instead, the XML version was a
temporary product subject to being discarded and rebuilt.
This situation had to change, because so long as the XML
version was a disposable product, no changes could be
made to the canonical version using its rich set of fields for
data description.

Case II: Controlled vocabularies
CPANDA provides bibliographic descriptions of each of
the data sets that we manage, which means that subjects
and descriptive terms must be used to assist with the
bibliographic control of the data sets. Because we need
a controlled vocabulary of descriptive terms, CPANDA
staff evaluated a variety of possible vocabularies. After
discussions with ICPSR, it was decided to work with
them to add to their thesaurus new terms related to
Cultural Policy and the Arts. By working with them, we
would be able to tap into a large vocabulary of terms
related to surveys and social science research, and they
would increase the base of organizations that use their
terminology. It was also decided to use Library of Congress
Subject Headings in addition to the ICPSR terms, to allow
bibliographic access by those familiar with that more
commonly used vocabulary.

The advantages of the collaboration with ICPSR are 1.) we
do not have to create our own thesaurus of terms, 2.) we
can use a vocabulary already rich in terms related to social
science data sets, and 3.) we can add to it, enabling us to
customize it somewhat to our own needs. It is also robust
and has institutional support.

Case III: Software for Analysis and Archival Manage-
ment
Several systems have been developed to perform analysis
of data sets and manage data archives. Because analysis
is quite exacting and difficult to program well, it would
require a great deal of effort to duplicate. There are also
many logistical issues related to the management of a web
site, and adopting software that would manage the site
would again save effort.

We examined the Nesstar system (Ryssevik and Musgrave,
2001) for both its analysis and archive management
functions. Most important, it passes the first hurdle of
performance: it has been implemented in a production
mode, not just experimentally in beta mode. It is a

6 IASSIST Quarterly Spring 2002 IASSIST Quarterly Spring 2002 7

well built system which could readily accomplish our
goals. It uses the XML DDI codebook. It allows full
text searching for variable discovery. It deals with many
archival management functions in a robust fashion and is
institutionally supported by the EC. We chose not it adopt
it primarily because it is on the Microsoft NT platform, and
we have committed ourselves to the Unix platform. So, we
did not select it, but not because it came up short in our
evaluation.

We examined the reports on Harvardʼs Virtual Data Center
(Altman, et. al, 2001), and were quite impressed with
their plans. If they succeed in making the system robust
and stable in the way they have envisioned it, it will be
quite an attractive option on a Unix-like platform. Being
open source, it will be robust in the sense that if it lacks a
feature and the local archive has the ability to create that
feature, the feature can be added. Many useful archival
management features and a flexible, distributed architecture
are in development. The software will use the XML DDI. It
has the institutional support of Harvard, MIT, and the NSF.

 In the performance realm, however, we feel that right
now it is at too preliminary a stage of development to
be adopted. It seems to only have been implemented in
an experimental stage, without a track record of stability
and portability. It does not seem to be robust yet. At last
report, it could only run on some versions of Linux. These
details may have changed by now, but as of the time of
the evaluation, we could not commit to its use. We remain
interested and hopeful that we might adopt it in the future.
However, it seems to be not quite there yet.

We did not investigate Data Ferret from the U.S. Federal
Government as closely as perhaps we could have. The
interface presented to the users did not appeal to us, and we
decided that we would not consider it further.

 The software that we in fact chose to license for the
analysis of the data sets online is the SDA software
from the Computer-assisted Survey Methods Program
at Berkeley (http://sda.Berkeley.edu:7502/). Although it
has limitations, such as not having source code available,
it does have virtues, like the fact that it already works
well in production mode. One can operate it within a
data archive as a black box analytical engine and design
oneʼs own interface to initiate online analysis. The results
of the analysis can be captured and customized. It does
not have archival management functions, but there is
nothing to prevent those functions from being added to
the interface that accesses SDA. Depending on how VDC
is implemented, it is not inconceivable that SDA will be
complementary to it.

Case IV: Full Text Indexing
On our site, as was already explained, we have developed a
feature that allows users to search the full text of questions,

variable labels and other variable notes for terms of interest
in the variable discovery process. In order to accomplish
this, some software must index the appropriate text and
provide operators for users to query the index. It is possible
to create ones own full text indexing application, but doing
so would require a fair amount of effort, while others have
already created such tools. Here again, we evaluated a
variety of products before settling on one option. We may
change our decision in the future.

Many database management systems have full text
indexing capabilities. We decided against using a major
commercial product like Oracle because of price. The
price of Oracle is not just the licensing fees, but, because
it is quite challenging to administer, one has to add the
cost of hiring experienced personnel who are able to
manage it. That personnel cost is perhaps higher than the
licensing. Otherwise, Oracleʼs functionality, robustness and
institutional support would make it acceptable.

We settled upon MySQL for our database management
system. It is open source and free software. It is popular
and has a large following in the open source community.
It is fast and scales well, even if it does not implement all
SQL standard features. It has a built-in full text indexing
function. Unfortunately, the built-in indexing has very
limited features and operators available.

Because the software that we chose has limitations, we
evaluated products that might supplement the product
used. Several major Internet Search Engines offer indexing
software that can interface with database management
systems. We discovered that these companies will license
their products for modest sums if they index web pages, but
they immediately begin charging much more if one uses the
interface to index databases. Perhaps they know that such
interfaces can be quite commercially lucrative and charge
accordingly. In any case, many of these search engines are
not available on many platforms and with APIs to many
programming languages.

As a result of these evaluations, we have settled for the
moment on the built-in features on MySQL and we hold out
hope for improved functionality in the 4.0 release.

NOTE POST-CONFERENCE: In July of 2002, we found
that the Swish-E search engine was compatible with our
web programming environment. We are now using the
Swish-E search engine for full text indexing of our MySQL
database, by extracting the records with a PERL program
and wrapping them in XML before handing them to Swish-
E. The coordination of the Swish-e index and the MySQL
database is handled using the Swish-E PHP class developed
by Olivier Meunier. Again, we are able to leverage the
sophisticated indexing technology of Swish-E and the data
retrieval power of MySQL.

8 IASSIST Quarterly Spring 2002 IASSIST Quarterly Spring 2002 9

Case V: Codebook Editors
Here I would just like to report that we evaluated and
attempted to use the MADDIE software developed at the
University of Minnesota to create DDI conformant XML
codebooks. The result of this experience is that we do
not plan to use MADDIE in the near future for codebook
editing. The primary problem as of six months ago with
MADDIE is that it is not very robust. Many features that
one comes to expect from text editors in general are either
not present or do not perform acceptably.

I believe that the problem with the MADDIE project
is that the project has tried to reinvent the wheel. They
have built their own text editor to manage XML DTDs.
They have had to reimplement many of the features that
come standard on a myriad of other text editors. Because
of the enormous amount of reimplementation involved,
necessarily developed on a limited budget, the project has
been overwhelmed and the product suffers from a lack of
robust features. Future efforts should perhaps try to build
upon a text editor that already has a rich set of functions
but which is open source and programmable. An editor like
EMACS could be given custom extensions to offer XML
specific features based on a DTD or Schema. One would
then leverage the other editing features already developed
by the open source community.

 That having been said, I would like to thank Wendy
Thomas, Bob Wozniak, and Hicham Berrada for letting

us use their code. They have put a great deal of work into
its development, and they should be appreciated for their
efforts, despite the results not being what one might hope
for.

Evaluating Evaluation
In all of our evaluations, CPANDA sought to find workable
solutions to data archive needs by adopting or building

on the work of others. Those efforts need to be ongoing.
We explain our criteria and findings in order to foster
discussion and reevaluation and welcome criticisms.

The DRY Principle
The DRY Principle is quite common throughout computer
science. Programs have functions and included libraries
to reuse code. Object brokers such as CORBA, COM and
SOAP are designed to reuse executables. Configuration
files allow compiler options to be specified in one
unambiguous location. The principle can be pushed to
advanced levels in cases such as compiler compilers and
automatic code generators, where the source code itself is a
temporary duplication of the base information stored in one
unambiguous location.

The DRY Principle was successfully implemented at
CPANDA with regard to codebook metadata management
and Web page creation, but it was not so successfully
implemented in terms of dynamic, automatic construction
of the software itself. In the data realm, we have established
a canonical version of the codebook and build all other
codebook products dynamically from it. See Chart 1
for a diagram of that process. On the Web site, we use
server-side database access to dynamically generate pages
customized to the userʼs context. Automated source code
generation has not been systematically pursued, but should
be placed on the schedule.

Chart 1

Conclusion
The concept of limiting duplication is one that is worth
making a priority in the development of any software
project. The two strategies of adopting previous efforts and
minimizing duplication have allowed us to develop our data
archive in an effective and efficient manner.

8 IASSIST Quarterly Spring 2002 IASSIST Quarterly Spring 2002 9

NOTES:
Altman, M., et. al. 2001. “A Digital Library for the
Dissemination and Replication of quantitative Social
Science Research,” Social Science Computer Review, (v.
19, no. 4, Winter, 2001), p. 458-470.

Hughes, K., Jenkins, S., Wright, G. 2000. “Triple-S XML:
A standard within a standard.” Social Science Computer
Review, v. 18, n. 4, Winter 2000, pp. 421-433.

Hunt, A., Thomas, D. 2000. The Pragmatic Programmer:
from Journeyman to Master (Reading, MA: Addison-
Wesley, 2000), p. 26-28.

Ryssevik , J., Musgrave, S. 2001. “The Social Science
Dream Machine,” Social Science Computer Review, (v. 19,
no. 2, Summer 2001), p. 163-174.

* Paper presented at the IASSIST Conference, Amsterdam,
May 2001. H. Vernon Leighton, Cultural Policy and
the Arts National Data Archive, Princeton University,
vleighto@Princeton.edu.

mailto:vleighto@Princeton.edu

