
Fall 1997 25

Rapid change in delivery method means
that the information which is necessary to
access data is also changing rapidly. The
density at which a tape or cartridge was
written is critical information for reading
the data on it while if the data is online the
location is critical. On way of handling
such changes in required information is to
store it in a relational database.

What exactly is meant by a relational database? Fully
relational databases, satisfying all conditions set out in
Codd’s definition, may only exist in theory and would be
more than needed for this discussion. Here what is
required is first that there be some degree of normalization
of the data. As an example some studies have only one
dataset while others have many, a record that tried to
anticipate how many datasets is not likely to be very
practical so put the study information in a study record and
the dataset information in a dataset record with one record
for each dataset and a key to the study record. Then it is
necessary that there be some way of accessing these
records together so that it looks as if two (or more) separate
records are really one. Structured Query Language (SQL)
is the accepted (complete with an ISO standard) way of
doing this for a relational database.

Using the example of studies and datasets in a simplified
version, let’s say we have two tables which is the accepted
term in relation databases for the structure in which the
records, called rows, are stored. The first table is called
studies and has fields, columns in relational terms,
study_num and title and the second table is called datasets
and has the columns study_num, dataset_num, and name.
Now a very simple example to make sure we are all on the
same page. You would like to have a list of all study titles
and the names of the datasets for each study. You could
issue the SQL command

select studies.title,
datasets.name
 from studies, titles
 where studies.study_num
= datasets.study_num;

This will give you a list of study titles and dataset names
which the title repeated for each dataset. Since you did not

request study_num or dataset_num you
will not get them back.

The experiences being talked about here
used Relational Database Management
Systems. These applications were started
under Ingres and migrated to Oracle when
the university wide choice of a database

system made the switch. When dealing just with data some
of our researchers have used SQL under SAS. The focus
here is not on the specific relational database but rather on
the concepts so specifics should be taken as concrete
examples rather than the only way of doing it.

Although querying the database directly using SQL is an
option and it is possible to use SQL scripts in place of some
of the things used here what will be talked about are Oracle
Forms applications (developed with Oracle Developer/
2000), perl scripts, and C programs. The C could probably
be replaced with perl but it was a very ambitious
undertaking written by the system administrator. When a
perl script has to interact with the database it is currently
oraperl which is perl4. The perl5 scripts use DBI/
DBD::Oracle and will go into production when the C
application has been successful tested out against a more
recent version of Oracle.

Because they are probably only of interest to show the wide
range of uses I will briefly touch on the UNIX
administration applications. The C application (using
Pro*C precompiler to interface with Oracle) is a print
accounting program that keeps track of printing on our
UNIX cluster and our NT network. Users are given an
allotment for printing each semester and must pay for
additional printing. At the end of each semester a
reconciliation is done from a cron job to zero out any
allocated funds not used and put in the next semester’s
allotment. The cron job is a perl script. The application for
providing additional funds (user paying, refund because of
bad printing, etc.) is a Forms application.

The other administrative application is for keeping track of
our users. Since not everyone on campus can have an
account on our system this application must check with
another database on campus to determine if a person is in
the correct department and has the correct status (no
undergraduates). This is accomplished by means of a

Tying Everything Together with a Relational
Database

by Pat Hildebrand *

26 IASSIST Quarterly

database link. I don’t know terminology for other
databases but with Oracle a database link is a means of
accessing a table in another Oracle database as if it were a
table in the local database. The printing is related to
system users by a column indicating what allocation of
print funds they get.

Data access is a bigger issue as while we provide
computing to a limited group we provide data to the entire
university. Since we require the use without an account on
our system to show up in person and present then campus
ID we originally developed applications under Ingres that
were used on our UNIX system in character mode so that
calling in from home did not present a problem. When the
applications migrated to Oracle and developed under
Developer/2000, we found that it didn’t make sense to
develop in character mode any longer. Even with PPP
when people called in from home they were still using
character mode as the campus software had vt220
emulation. The database had become even more a part of
the application under UNIX as that is when we started
putting data on line so that there was even more
information that we were keeping track of although the
user probably used less of it.

When we designed the database we had been using tapes
and cartridges for obtaining the data and at first the data
was still used on the mainframe where the access was via a
tape job. The tables included one for tape labels which
also kept track of the tapes that were used for backing up
accounts, temporary use, blank tapes entered into the
system but not yet used, etc. Another table contained tape
information such as the density, the character set, and
whether the tape was labeled. At first glance it might
appear that these two tables are each one row per table but
the labels table has text which could require more than one
row. Other tables are for the individual files on the tape.

When we started putting data online we could redesign the
tables dealing specifically with the tapes to include online
information or use the fact that the database was relational
and use an additional table for the online information. We
choose the later since not all data was being placed online.

Data requests, information about what is online, and the
library system for hard copy documentation all share
tables about the studies as well as having their own tables.
For data are current system is a mixture of perl scripts,
Forms applications, and even some cgi scripts for web
access to the information. The web access takes care of
the university wide access to the information. People on
campus but outside those who have accounts on our
system still have to present an ID and request access in
person but now they know if the data are on campus. If
the data are on campus they are able to get some
information such as the size of files that they are talking
about before they make the request so that they can make

sure they have the space. We still get people who only
want a few numbers, often a statistic that they would have
to calculate from a very large dataset, thinking that
everything will fit on a floppy that already has a number of
files on it, but the web seems to have found users who are
better prepared to make use of the data when they come
over to request access.

The heart of our data system is a series of perl scripts.
When new data are received information is entered into the
database about the study and dataset numbers and the type
of file (data, documentation, program, etc.). This is
actually a Forms application. As the information is
entered a todo file is written with information from this
table and a number for later identifying the file internally.
Please note that there is additional information entered
form a master-detail relation in the form and
programmatically.

Perl scripts to read tapes/cartridges or process files which
have been ftped or are on other media such as CD-ROM
use the todo files to determine if a file should be read and
do the processing. The todo files are also generated for
existing tape/cartridge files to be put online and moving
some files but not all from a CD-ROM to disk so the issue
of whether or not a file should be read is real. When
processing is complete (some, unfortunately, is still
manual checking) a file is written with information that
should go into the database as well as information needed
to move the file from the processing area to where it is
accessible to the users.

The names of these files are placed in another file that is
read by a nightly cron job. The actual moving of the data
and recording of the information in the database is done by
this script. Some of the other things done by the script are
to check the type of file, find out from the database where
that type of file should be moved, check that there is
enough space for the file, if need be and there is one
available set the database to use a new directory, check
that there is not currently a file in the directory with that
name, and send e-mail about problems.

The library application is able to tell whether we have any
hard copy documentation for a specific study and wether it
is on hand or checked out, check thing out, and check them
back in. If someone already has a copy of a specific piece
of documentation checked out they are not permitted to
check out a second copy of the same thing. Also if
someone has overdue documentation checked out the
application will say what is overdue and no further check
outs are permitted for that individual until the overdue
documentation is returned and the situation cleared is
some other way.

All of the user information for requesting data and
checking out documentation is the same table so that

Fall 1997 27

changes do not have to be entered in multiple locations. As
much of the information as possible is look up information
from other tables. This not only makes the entry simplified
but it also makes for fewer errors’ in addition to avoiding
typos this avoids ambiguous entries such as "student".

There are a lot of relations that exist in the services that we
provide. Using a database allows us to restrict who can do
what at what time. Using a relational database for the
necessary information has made for greater accuracy, a
simplification of things since once we have entered an
individual say for data we don’t have to do turn around and
enter them again for checking out the documentation, and
the ability to do automate some of the work.

References:
Date, C.J. with Hugh Darwen. A Guide to the SQL
Standard, 3rd Ed. Reading, MA: Addision-Wesley
Publishing Co. 1993.

Edelstein, Stephen. Learning Oracle Forms 4.5: A Tutorial
for Forms Designers. New York, NY: Relational Business
Systems. 1995.

Gundavaram, Shishir. CGI Programming on the World
Wide Web. Sebastopol, CA: O’Reilly & Associates, Inc.
1996.

Musciano, Chuck & Bill Kennedy. HTML The Definitive
Guide. Sebastopol, CA: O’Reilly & Associates, Inc. 1996.

Wall, Larry, Tom Christainsen & Randal L. Schwartz.
Programming Perl, 2nd Ed. Sebastopol, CA: O’Reilly &
Associates, Inc. 1996.

http://www.hermetica.com/technologia/DBI

Oracle Developer/2000 Documentation

Forms Developer’s Guide
Release 4.5
Part No. A32505-1

Forms Reference Manual, Volume 1
Release 4.5
Part No. A32509-1

Forms Reference Manual, Volume 2
Release 4.5
Part No. A32510-1

Forms Advanced Techniques
Release 4.5
Part No. A32506-1

Forms Messages and Codes
Release 4.5

Part No. A32508-1

* Paper presented at IASSIST/IFDO ‘97, Odense, Denmark,
May 6-9,1997. Pat Hildebrand, Social Science Computing,
University of Pennsylvania, pat@ssc.upenn.edu

http://www.hermetica.com/technologia/DBI
mailto:pat@ssc.upenn.edu

