
12 IASSIST Quarterly 2015

IASSIST Quarterly IASSIST QuarterlyIASSIST Quarterly

Abstract
One of the roles the DDI standard can perform is to
serve as a medium for the transfer of metadata and
data across both space and time. A crucial component
of this role is the ability to represent the data and
metadata contained in common data analysis and
management packages. This paper describes an
experiment using the program Stat/Transfer to move
datasets among five popular packages with DDI
Lifecycle as an intermediary format.
We created a dataset in each of the five packages and
then exported it to DDI Lifecycle via Stat/Transfer. We
also created a DDI Lifecycle instance and an associated
delimited dataset, containing as many of the metadata
elements found in any of the five packages possible
and then exported
it to each of the
packages. Success or
failure to transfer was
recorded for a set of
generic metadata
elements identified in
an earlier paper. Using a
commercial file transfer
program helped identify
which metadata elements were transferrable through
a generally available machine actionable process.
The experiment revealed some areas for potential
improvements to DDI as well as suggestions for data
analysis packages and research practices.

Keywords: DDI, data formats, metadata, statistical
packages, Stat/Transfer, JMP, R, SAS, SPSS, Stata.

Introduction
Not uncommonly, datasets are initially produced
in one software package specific format, whether
proprietary, as in an SPSS dataset, or open source, as
in an R workspace. As the data are reused, either at a
later time or by other researchers in another place they
will commonly need to be imported into a different
software package. Even within one organization a
variety of software tools may be employed. Researchers
may have differing needs and personal preferences.
Different packages may have unique analysis tools.
Software and preferences for software also evolve over
time. Data retrieved from an archive after a period of
dormancy may very well need to be represented in
some new format..

An earlier paper (Hoyle et al., 2010) enumerated a list of
generic metadata elements that could be represented
in at least one of a set of eight common data file
formats. No one format was able to represent all of
the metadata elements. DDI Lifecycle came closest to
being able to represent all of the metadata elements.
In what follows, ”DDI Lifecycle” refers to DDI Version
3.1, the version used for the experiment described

DDI as a Common
Format for Export and
Import for Statistical
Packages
by Larry Hoyle and Joachim Wackerow1

The role of DDI envisioned here is as
an intermediate format in the process
of moving data and metadata among
software packages

IASSIST Quarterly 2015 13

IASSIST Quarterly

here. Where appropriate, we will describe additional capabilities
of DDI 3.2, published in 2014. Some metadata elements were only
representable in DDI 3.1 with a workaround (as r:Note elements)
making automated discovery challenging. A worthwhile goal
for DDI is to be able to contain a machine actionable superset of
the metadata elements across the most commonly used array
of analysis software. For the “transport” role envisioned here, it is
important for DDI to be optimized for clarity and completeness, not
necessarily for speed or efficiency..

The Packages
This study used five of the formats which were able to contain
the broadest array of metadata. Each of the five packages is
able to store metadata some elements not shared by all of the
other packages.

•	 JMP versions 8 and 10 (SAS Institute - JMP)
•	 R version 2.14 and 3.01 (R Development Core Team, 2009)
•	 SAS version 9.2 and 9.4 (SAS Institute - SAS)
•	 SPSS version 19 and 21 (IBM)
•	 Stata version 11 and 13 (StataCorp)

The role of DDI envisioned here is as an intermediate format in the
process of moving data and metadata among software packages.
Figure 1 shows that role in moving data and metadata among the
5 formats investigated in this project. Given its open nature and
to the extent that it comes closest to handling a superset of the

metadata managed by the analysis program formats, DDI has an
advantage as the intermediate format.

DDI in this role is not necessarily restricted to expression as an
XML instance. While the formal specifications of DDI Lifecycle 3.1
and 3.2 are XML schemas, DDI content can be stored physically as
an XML file, in an XML database, or even in a relational database.
For a discussion of the latter see (Amin et al., 2011). The DDI
Alliance is also currently working on two RDF vocabularies (Data
Documentation Initiative. 2013a). Future plans for DDI call for a
model based specification which can be expressed both in XML
and OWL / RDF (Data Documentation Initiative. 2013c).
Stat/Transfer versions 11 and 12 were used for the experiment
described below.

Transferring data
There are several ways to transfer data and metadata to and from
DDI and the five packages. While not practical for datasets of
any size, DDI can be hand-edited with an XML editor. There are a
number of tools listed on the DDI Tools page (Data Documentation
Initiative, 2013b) which can convert metadata to and from DDI
and at least one other format. As of version 11, Stat/Transfer can

move data and metadata between DDI and 35 other formats. This
breadth of coverage was a factor in choosing Stat/Transfer for this
experiment. The intent here was neither to endorse nor critique
Stat/Transfer, but rather to get a better sense of the current state
of the ability to use DDI as a medium for automatic translation of
data and metadata across software packages. Since Stat/Transfer
(Circle Systems) passes the information through its own internal
model, in a sense it is also a sixth format as well as the transfer
tool.

The Experiment
Our experiment was designed to address three questions. What
metadata are currently possible to transfer with an automated
procedure? What metadata elements does DDI support that Stat/
Transfer does not? What more could DDI support?
Stat/Transfer relies exclusively on the g:ResourcePackage element
to contain the metadata in the ddi:DDIInstance it produces.
No s:StudyUnit is produced. This usage is consistent with the

approach taken by Colectica when importing from SPSS and Stata,
the philosophy being that there are no specifically study-level
metadata contained in the dataset. This does reveal a shortcoming
in the native formats of all of the packages. These files all contain
metadata about the structure of the file but almost no metadata

Figure 1 – DDI as an intermediate format

Figure 2 From Packages to DDI Validated with Colectica Figure 3 From DDI to Packages

14 IASSIST Quarterly 2015

IASSIST Quarterly

about the actual data or study. Custom attributes on the dataset
might offer a mechanism to remedy this shortcoming.

A compatible DDI file used as a source for transfer into the other
5 packages was hand-entered into an XML editor. A separate
comma separated variable file contained the associated data. The
XML editor validated the metadata against the DDI XML schema.
Secondary level validation on the pair of files was performed using
Colectica Reader version 3, and Colectica Express version 4. At
this time neither Stat/Transfer nor Colectica were capable of using
embedded data in the DDI file.

Datasets like the one shown in Figures 4 and 5 were created in
R, SPSS, Stata, SAS and JMP. Each of these datasets contained
instances of all of the generic metadata elements they could
represent. Figure 6, for example, shows the addition of custom
attributes named “Concept”, “Note”, and “Universe” to the sample
SPSS dataset, as well as metadata for level of measurement
(nominal, ordinal, and scale), and role(input and target).
The hand-edited DDI file was transformed using Stat/Transfer into
each of the package’s native format. Datasets created in each of
the packages were also transformed into DDI. The resulting files
were then reviewed for each of the metadata elements considered
in the earlier study. Grids like the one shown in Figure 7 were filled
in, with a “+” indicating successful metadata transfer, a “-” indicating
unsuccessful transfer, and a “~” indicating partial success – such as

metadata transferring to an unexpected DDI element. Hatched
shaded cells indicate metadata elements not supported by that
software package.

Summary of results
Data, and basic metadata, transferred to and from DDI from all
5 packages. For the most part the elements representable in all
of the packages transferred to and from DDI correctly. These
elements include:

•	 dataset name – for all of the packages this came from the name
of the file in the host operating system. An R workspace file can
contain multiple data frames and other objects.

•	 variable names
•	 variable labels – in JMP this becomes a note on the variable
•	 variable order
•	 important variable data type (such as date and datetime) – see

below for issues related to time zone.
•	 a missing indicator - see below for issues related to multiple

distinct missing values
•	 labels for numeric values

A few metadata elements common to most of the packages never
transferred correctly:

•	 Display formats – This is really no surprise given that there are no
standards for display formats across the packages.

Figure 4 - The SPSS dataset with value labels hidden

Figure 5 - The SPSS dataset showing value labels

Figure 6 - Variable properties from the SPSS dataset, including user defined properties - Concept, Note, and Universe

IASSIST Quarterly 2015 15

IASSIST Quarterly

•	 Notes on datasets or variables– Most of the packages have some
facility for general notes on a dataset or a variable. These were not
successfully transferred.

•	 User defined attributes on datasets or variables – Several of the
packages allow for user defined attributes on the dataset or on
individual variables. These did not transfer successfully.

•	 Measurement level – Several packages allow for the specification
of measurement level for variables. The vocabulary for
measurement level varies across packages though.

•	 Weight – SPSS and JMP can store an attribute indicating that a
variable functions as a weight. This never transferred.

Results in more detail

Dataset Level

Successful
•	 Dataset name (except R)
•	 Date Modified

Issues
In most cases dataset labels, dataset date modified, and value
labels for numeric variables transferred. Value labels do not transfer
to R, but this is not unexpected, since factors in R are somewhat
conceptually different than a labeled variable in the other
packages.

For the 5 packages studied, dataset name is typically not included
in the dataset file itself, but rather is contained in the name
of the file (at the operating system level). If the dataset name
is taken from the file name this is a potential problem for R
where multiple data frames may be contained in the workspace
file. A DDI file should contain that name in l:LogicalProduct/
l:LogicalProductName. Additionally, the filename should be
captured in pi:PhysicalInstance/pi:DataFileIdentification.
Metadata elements which are not common across the packages
did not transfer well, even when possible. These include user
defined characteristics of the dataset, notes (which are sometimes
a user defined characteristic) and scripts embedded in the dataset

(supported only by JMP in this collection). Rule based integrity
constraints also did not transfer.

We did not include foreign key constraints or passwords on the
sample datasets.

Variable Level

Successful
•	 Variable name
•	 Basic data type
•	 Position
•	 Variable label
•	 System missing values
•	 Value labels – numeric variables
•	 Value labels – text variables (where possible)

Issues
At the variable level, display formats, such as a leading Euro
symbol, did not transfer at all. Given that display formats are not
standardized across packages, this is not surprising.
Other elements which did not transfer are: number of decimal
positions, scale (not supported in most packages), measurement
units, measurement level, variable as a weight, role, user-defined
variable attributes, and notes on variables. Some of these, such as
weight, and measurement units are really essential for interpreting
the data. Others carry meaning beyond cosmetics. Number of
decimal places, for example, can connote the level of precision
of measurement.

Missing Values
Several packages have the ability to use multiple distinct values
to indicate different categories of missing data. Stata and SAS
both have a set of “out of band” values to represent distinct
missing values. These are displayed as “.A” through “.Z” and “._”.
SPSS, instead, allows “in band” values to be chosen as missing
values, a “9” or a “999”, for example. SPSS also allows one range
of values to be declared missing, e.g. all values between 90
and 99 inclusive. R has only one missing value “NA”, although

Figure 7 – Example transfer results

16 IASSIST Quarterly 2015

IASSIST Quarterly

it also has indicators for infinite numbers “Inf” e.g. the result
of 1/0 and “not a number” (“NaN”) such as the result of 0/0
. Transferring variables with multiple distinct missing values
among packages is not straightforward. DDI3.2 added the
ManagedMissingValuesRepresentation element which allows
adding a code scheme for missing to a numeric representation.
This is consistent with the notion of “sentinel values” in ISO 11404.

One approach to avoid these issues in datasets to be transferred
(or archived) is to just use the system missing value in the primary
variable and then create a secondary dummy variable with
labeled indicators to indicate categories of missing. These dummy
variables could also be shared in a resource package.

Multiple Value Labels
Both SAS and Stata keep labels for values separately from variables.
This allows multiple variables to share one set of labels. It also
allows for alternative labels to be used in different contexts – e.g.
longer labels for tabulation rows than tabulation columns, or labels
in multiple languages. Each of these packages allows a variable to
have an association with one set of labels at a time. Unaffiliated
labels can exist in memory during a Stata session but a Stata “.dta”
file only stores the sets of labels currently associated with variables.
Stata also has a dta XML export format that will export all sets
of labels currently defined in a Stata session. SAS can export the
sets of labels (called “formats”) into a separate dataset, a CNTLIN /
CNTLOUT dataset. With both packages the definition of multiple
sets of labels can also exist in script files.

An example of multiple formats in SAS follows, with short labels for
a variable “gender” in two languages, and a longer set of labels in
English. The English value is attached to the variable.

proc format cntlout=eddi.sas_Fmts;

 value GENDERen

 1=”Male” 2=”Female”;

 value GENDERde

 1=”Männlich” 2=”Weiblich”;

 value GenderL

 1=”Self Identified Male” 2=”Self

Identified Female”;

…

 format gender GENDERen.;

The Stata example below show the same three sets as value labels.
label define GenderE 1 “Male” 2 “Female”

label define GenderG 1 “Männlich” 2 “Weiblich”

label define GenderL 1 “Self Identified Male”

 2 “Self Identified Female”

label values Gender GenderE

In both of the preceding examples the language is represented by
a user-defined convention. Labels of a particular language cannot
be selected in some general machine actionable way.

DDI is capable of representing these multiple sets of labels
in l:CategorySchemes and l:CodeSchemes. DDI links to one
l:CodeScheme from a variable, but each l:Category in the
l:CategoryScheme linked from that l:CodeScheme may have
multiple labels, distinguished by xml:lang and type attributes.
There currently appears to be no way though, to indicate which
label is the default, or currently associated label.

In the DDI example below the labels for the male code are
differentiated by both language, with the “xml:lang” attribute, and
type, with the “type” attribute. DDI can associate the whole set
with an l:Code, but cannot indicate which label was the currently
assigned label.

<l:Category id=”c1” version=”1.0.0”

versionDate=”2011-10-26T13:33:00”

 missing=”false” >

 <r:Label xml:lang=”en-US” type=”GENDER”

>male</r:Label>

 <r:Label xml:lang=”de” type=”GENDER”

>männlich</r:Label>

 <r:Label xml:lang=”en-US” type=”GENDERL”

>Self Identified Male</r:Label>

None of the non-linked sets of labels exported from Stata or SAS to
DDI in our experiment.

Role
Several of the packages have a defined variable attribute of “role”.
This may be used to indicate which variables are eligible to be
independent or dependent variables in an analysis, or to indicate
more specific functions. Given that the vocabulary for “role” is not
standardized across packages, it is not surprising that this metadata
element does not transfer. Mapping against a commonly accepted
controlled vocabulary would allow machine actionable decisions
about comparable or incomparable proprietary terms.

Custom (User Defined) Variable Attributes
With the addition of extended attributes to SAS version 9.4, all
of the packages evaluated allowed the definition of custom
attributes for variables. None of these were exported to DDI in
our tests. DDI 3.2 has a facility for recording these name, value
pairs in r:UserAttributePair elements. The adoption of
a commonly accepted controlled vocabulary by data producers
would allow mapping into defined DDI elements.

Labeled Ranges
Both SAS and JMP have the capability to label ranges of values for
a variable. In this use SAS formats act as an analog to a normalized
structure in a relational database, allowing information to be
recorded in only one place (variable). SAS programs can use these
formats dynamically to perform analyses on the categorized
variables. Since there is currently no good way to represent these
in DDI, these did not transfer to DDI. Perhaps it is not best practice
to rely on them for archival datasets and instead create additional
categorized variables.

Built-in Display Formats
Some display formats built in to the various packages serve mostly
cosmetic functions – left or right alignment, the choice of decimal
or thousands separator characters, and so on. Others convey
important meaning. Currency symbols, for example, denote units
of measurement. Some sort of standardized representation for at
least a subset of formats across packages would be very useful.

Date and Time
Date and time conversion was not completely tested. Date and
time types are realized in the different packages in various ways.
Some (like SAS) have the capability of exporting date and time
data in ISO formats. Date and Time formats according to ISO 8601
should be used to assure interoperability of programs (Wikipedia.

IASSIST Quarterly 2015 17

IASSIST Quarterly

ISO 8601). A time value’s dependence on a time zone should be
carefully checked and documented. Offsets from Coordinated
Universal Time (UTC) should be included where meaningful.
Stat/Transfer provides a general means to specify the date and
time format for export into a CSV file where all values for a variable
have the same offset. A format according to ISO can be configured
but is not provided by default. A fixed time zone offset can be
added to all values for the variable. As an example, if all values for

a variable were Central European Daylight Saving Time (CEDT), a
time value could be written as: 2009-06-30T18:30:00+02:00 i.e.
18:30:00 on 30. June 2009 (CEDT). Note that the time zone offset
of +2.00 would be a constant across all values for the variable. If
observations in the dataset might all have different offsets, the
only option would be to add an additional variable containing the
offset.

R and DateTime
One issue we encountered with transferring datetime variables
in and out of R, was that of non-explicit specification of whether
datetime values represented UTC or local values. When the
different programs involved made different default assumptions
datetime values got shifted by the local offset from UTC. Explicit
inclusion of the time zone in datetime values would avoid
this problem.

Here to There (and Back Again?)
The grid like shown in Figure 7 can be used to predict what
metadata will survive a trip from one package to DDI and then to

another package. We created new grids showing that evaluation
for each of the packages. In the third to last row of Figure 8, for
example, labels for numeric values can be seen to transfer from
SPSS through DDI (the yellow column, labeled “To DDI 3.1 FROM”)
to SPSS, Stata, SAS, and JMP. They would not survive the journey
from SPSS to R since R factors do not correspond exactly to labeled
numeric variables. The complete set of these grids can be seen in
Appendix 3.

Suggestions for DDI
This experiment generated several suggestions for DDI 3.1. These
are listed below in rough order from the most specific to the
most general.

Multiple labels for a category
A mechanism to indicate whether one of a set of Labels for an
l:Category was currently assigned to a variable (or not) would be
useful for representing SAS and Stata data. It would also add clarity
to the current representation of multiple labels for a Category
in DDI. This could perhaps rely on the “type” attribute of the
Label element.

The following example shows a set of labels for a gender variable,
both in multiple languages and with a “long form” in English.

Which “type” attribute should be selected by default when
referencing the Category?

Figure 8 – Example Here to There Grid

18 IASSIST Quarterly 2015

IASSIST Quarterly

<l:Category id=”Gm” version=”1.0.0” versionDate=”2011-
10-26T13:33:00”
 missing=”false”>
 <r:Label xml:lang=”sv”
type=”GENDERShort”>kvinna</r:Label>
 <r:Label xml:lang=”de”
type=”GENDERShort”>weiblich</r:Label>
 <r:Label xml:lang=”en-US”
type=”GENDERShort”>female</r:Label>
 <r:Label xml:lang=”en-US” type=”GENDERLong”>Self
Identified
 Female</r:Label>
</l:Category>

Perhaps this could be specified within the l:CodeRepresentation
element. One possibility would be for l:Representation within
l:Variable to contain a “PrimaryLabelType” selecting a “type”
attribute from the set of labels as in the example below.

<l:Representation>
 <l:CodeRepresentation blankIsMissingValue=”true”
 classificationLevel=”Nominal”>
 <r:RecommendedDataType>string</
r:RecommendedDataType>
 <l: PrimaryLabelType > GENDERshort </l:
PrimaryLabelType>
 <r:CodeSchemeReference>
 <r:ID>5c706c37-d19b-4b8e-ac6d-
40094024421f</r:ID>
 <r:IdentifyingAgency>example.org</
r:IdentifyingAgency>
 <r:Version>1</r:Version>
 </r:CodeSchemeReference>
 </l:CodeRepresentation>
</l:Representation>

Ranges
A facility to assign categories to ranges of coded and numeric
variables would allow representation of these features from
SAS and JMP datasets. It would also allow a range of values to
be labeled as missing. DDI 3.2 allows this for numeric with a
ManagedNumericRepresentation. See the Conclusions section for
more details.

Precision vs. display information
Numeric output formats can convey an ambiguous amount of
information about the precision of measurement of a variable.
By convention, a value formatted in “scientific notation” as 1.2345
X106 would be considered to have been measured to five digits
of precision. The level of precision for same value formatted
as a decimal with zero digits to the right of the decimal point
(1234500) is not clear. It would be useful for DDI to have an explicit
representation of level of precision of measurement.

Integrity Constraints
Several of the packages we evaluated allow for defining some
sort of integrity constraint on a variable, either by a list of valid
values or by logical expression. An expression like mod(age,1)=0,
for example could be used to only accept integer values of age
(even though stored as type float). Expressions might also refer to
multiple variables, as in an expression limiting years of education
to age – 5. SAS also allows foreign key integrity constraints, only
allowing entry of values appearing in a column in another table.

DDI 3.1 seems to lack an explicit representation of integrity
constraints. DDI 3.2 has a workaround described in the Conclusions
section below.

Data Types
The data types defined in the statistical packages generally do
not transfer perfectly. Note that data type is distinct from display
format. The most commonly used data types in the packages
are integer, double precision, Boolean, and character strings.
The data types can be captured in DDI in p:PhysicalLocation/
p:StorageFormat. The related documentation recommends the
use of a controlled vocabulary. One way would be to develop it
on the basis of XML Schema data types (W3C 2004) and/or SQL
data types (Wikipedia. SQL -- Data Types) which both seem to
comprehend the most used forms of data types.

Without a standard for output formats against which to map
the various proprietary formats, automated translation from one
package to another via DDI is difficult. Documentation for the
DDI element r:GenericOutputFormat recommends the use of a
controlled vocabulary. Perhaps one could be developed based on
Java, C, or Fortran.

Multiple distinct system missing values
DDI could use a more explicit method of representing multiple

“out of band” missing values such as used by SAS and Stata, or the
Inf, NA or NaN values in R. These values may sometimes also be
labeled, necessitating links to l:Categories. DDI 3.2 allows this with
the ManagedMissingValuesRepresentation element.

Text descriptions only
Several other generic metadata elements that can be represented
in some of the packages can currently only be represented as
r:Description or r:Note elements in DDI. More machine actionable
representations of these elements would be useful.

Date created - Some packages (and operating systems)
may track not only the date a dataset was
last modified, but also its initial creation
date. In DDI3.2 this can be recorded in
pi:PhysicalInstance/pi:DataFileVersion/@
VersionDate or pi:PhysicalInstance/r:Citation/
dc:created.

 Publication date can be recorded separately in
pi:PhysicalInstance/r:Citation/r:PublicationDate

Scripts - Some packages can store scripts in the
same structure as the dataset. Currently
these can only be represented in DDI as an
l:LogicalProduct/r:Description element. A DDI
element identifying the script as a script written
in a particular language (e.g. R, Jmp Scripting
Language) would be useful.

Notes - Some packages allow a “Note” attribute to
be attached to a dataset or variable. While
such a note can be preserved in an an
l:LogicalProduct/r:Note, it would be more
machine actionable to specifically identify
the text as having come from a “note” in
the original format. Some packages treat a
note as just another (name,value) pair. In
DDI3.2 this could be recorded with a value

IASSIST Quarterly 2015 19

IASSIST Quarterly

of “note” in the r:AttributeKey element of a
r:AttributeKey , r:AttributeValue pair in either an
r:ProprietaryProperty or in an r:UserAttributePair.

Value colors - Some packages allow assignment of colors

to particular sets of values or observations.
Colors may represent some manually assigned
attribute of the data, such as suspected outliers,
or, in the case of SPSS, imputed values. While
in one sense this could be represented by a
code and category scheme, it might be more
machine actionable to flag the color values as
representing colors in some way.

Filters (Triple-S) - Triple-S allows a variable to point to another
variable as it’s “filter”. When the filter variable
has the value TRUE, the variable pointing to
it is available for that case. A workaround
for numeric variables is described in the
Conclusions section below.

Suggestions for transport programs

Internal model for categories and codes
Some packages, like SPSS or JMP, store value labels as attributes of
variables. Others, like Stata and SAS, store sets of labels (formats in
SAS) separately and tie them to variables by reference. Since the
latter method can represent anything the former does, it should
be the basis for the internal model of value labels (categories and
codes in DDI).

Detect reuse of sets of value labels (categories and codes)
Once sets of value labels are represented independently from
variables and used by reference, they do not need to be defined
multiple times. When converting from a representation where a
given set of labels might be defined multiple times (e.g. a Likert
scale in a survey) to one like DDI where a set can be reused, it
is desirable to identify and eliminate the duplication. For one
approach to this process see (Wright, 2011).

Multiple sets of categories and codes applicable to a variable
As discussed above, it is possible to have multiple sets of categories
and codes applicable to a given variable, for example labels in
different languages or of different lengths. With both SAS and
Stata only one of the sets can be associated with a given variable.
With DDI multiple languages and types can be associated with a
variable. An internal model that allows multiple associations and
specification of a default or primary set would allow representation
of all of the possibilities.

Use the Dataset name when distinct from the file name
In cases like R where the name of the dataset is not necessarily
the same as the name of the file containing it, the dataset name
should be used.

Generic vs. Proprietary Information
Metadata harvested from a proprietary dataset can be classed into
four categories:

1. Generic information that corresponds to a DDI element
2. Generic information for which there is no specific DDI element
3. Proprietary information that corresponds to a DDI element
4. Proprietary information for which there is no DDI element

With DDI 3.1, information of type 2 could only be recorded in an
unstructured r:note. Information of type 4 could be recorded in
a r:ProprietaryProperty. With DDI 3.2, information of both types
2 and 4 can be recorded in r:AttributeKey , r:AttributeValue
pairs – in either an r:proprietaryProperty (category 4) or an
r:UserAttributePair (category2).

Packaging Structure
DDI3.1 allows packaging many elements in either an s:StudyUnit
or a g:ResourcePackage. DDI 3.2 adds a third alternative with the
ddi:FragmentInstance element. Ideally a transport program should
be able to handle any of the three structures. Unfortunately this is
not always the case. The DDI community should probably make a
recommendation for a preferred structure for transport instances.

Suggestions for statistical and data management
software packages

More metadata
All of the packages reviewed here are lacking in the ability to
include enough structured metadata in a dataset to actually
interpret the data. Many packages allow the attachment of (name,
value) pairs of attributes, but without those names and values
coming from some sort of structure or controlled vocabulary the
metadata have limited interpretability or searchability beyond the
data’s creators.

Metadata elements such as concept and universe are relevant to a
broad array of data. Knowing that a variable was only measured on
male children, for example, is important when drawing inferences
based on analysis of that variable. For data captured by surveys, at
a minimum it is important to know the exact text of the question
asked of respondents. Metadata about groups of concepts,
questions, and variables are also important. Geographers and
others point out that all data are spatial. Metadata about spatial
coverage are proving increasingly useful.

Flexible structure
Instances of metadata from many metadata standards are
expressible in XML. One possibility would be for statistical and
data management packages to add the capability to attach an xml
instance from a defined standard to their datasets. For well-known
standards like DDI it would also be possible to integrate the use of
that XML into their procedures. Survey analysis procedures could
incorporate metadata like question text and even question flow.
With some software packages it might be possible to include DDI
XML in a key value pair.

Suggestions for research practices and preparing
archival datasets
This experiment generated a few suggestions for the practice of
preparing archival datasets.

Reason for missing – multiple missing types
Use an auxiliary variable to indicate reason for missing. These
could be shared in a g:ResourcePackage. Figure 9 shows a variable

“MeasureMissing” which differentiates type of missing for the
variable “Measure”. The pairing of these two variables could be
documented with a l:VariableGroup element.

Alternative formats
Create additional variables for data representable with
alternative formats

20 IASSIST Quarterly 2015

IASSIST Quarterly

•	 Long labels
•	 Languages
•	 Coded ranges

Doing this for coded ranges requires some additional metadata
though. The continuous variable Body Mass Index (BMI), for
example, has associated ranges indicating categories such
as “underweight”, and “obese”. These ranges are further broken
down in a hierarchy with multiple sub-categories. An additional
variable could be recoded from a BMI measurement, but
the rules for recoding would also need to be recorded (in a
d:GenerationInstruction) in order to ensure that the exact ranges
for each category were captured.

User attributes
Use a controlled vocabulary for the names of user attributes
(characteristics, properties) where available. If this practice were
common, then a much wider range of metadata would be
transferrable across packages, without the need for revisions to the
programs. One possibility for such a controlled vocabulary might
lie in a semantic data form of DDI elements.

Where available, also use a controlled vocabulary for the values
of user defined attributes. An example would be to use an
attribute named “AnalysisUnit” with values taken from the DDI
AnalysisUnit controlled vocabulary. (DDI Controlled Vocabularies
Working Group)

Time zones
Where possible, explicitly specify time zone information in
datetime values. Datetime values without explicit specification
of time zone may be unpredictably interpreted as local times or
universal times as they are converted from package to package,
leading to changes in the data.

Conclusions
A few general conclusions can be drawn from this experiment:

Adoption of DDI by tools like Stat/Transfer is encouraging. Basic
metadata is transferrable among all 5 packages via DDI.

The current state still means that some important metadata that
might be contained in proprietary format data files still must be
either hand entered into DDI or harvested and entered by user-
written code.

No one package has a superset of the other’s metadata. Several
desirable elements are not universally supported. Some desirable
elements like concept and question are not supported by any of
the packages, except as user defined (name, value) pairs.
The fact that all of the metadata typically recorded in a proprietary
dataset file can be represented in a g:ResourcePackage without
an s:StudyUnit reveals a lack of a structured facility for recording
information about the origin of that dataset. The development
of best practice recommendations for using custom attributes of
variables and datasets could be one approach toward remedying
this situation.

As mentioned earlier, DDI3.1 allows packaging many elements in
either an s:StudyUnit or a g:ResourcePackage and DDI 3.2 adds a
third alternative with the ddi:FragmentInstance element. The DDI
community should specify one preferred packaging structure to
be used as a transport instance.

DDI is almost a superset of the packages considered. Being able
to represent a superset of metadata elements across the most
commonly used packages is a worthy goal for DDI. Some missing
elements like mentioned above should be added for this purpose.
Our suggested list of needs follows.

•	 A	facility	to	define	an	assigned	set	of	value	labels	to	a	variable.	
This could be done by specifying a preferred type and language
for subsetting a category scheme.
•	 A	facility	to	assign	categories	to	ranges	of	coded	and	numeric	
variables. DDI3.2 now allows a ManagedNumericRepresentation

Figure 9 - An auxiliary variable for “Measure” indicating type of missing

IASSIST Quarterly 2015 21

IASSIST Quarterly

to have a set of NumberRange elements, each of which can
assign a label to the range. ManagedDateTimeRepresentation
allows a label to be assigned to a duration. The
ManagedTextRepresentation element does not have a
corresponding “TextRange” element.
•	 A	method	of	recording	the	level	of	measurement	precision	
to variables, e.g. the number of significant digits. This is distinct
from the number of digits to be displayed to the right of the
decimal point. As an example the number written as 123000
has 0 digits to the right of the decimal point and carries no
information about the precision to which it was measured. If
expressed as 1.230E5, though, the convention is that there are
four significant digits.
•	 A	facility	for	recording	complex	integrity	constraints.	In	
DDI3.2 a r:ProcessingInstructionReference can be attached
to a l:VariableRepresentation which can then refer to a
d:GeneralInstruction. This could be used to describe a constraint
as a logical expression that must hold true for the value of the
variable. This is a usable workaround, but the semantics are too
narrow in that a constraint is a rule for the variable independent
of how it is applied. A more general approach in future DDI
version could be an Instruction element having a type attribute.
The type might take on values of ”derivation”, or ”constraint”,
or ”processing”. Note that foreign keys can be described with
a RecordRelationship.
•	 Integrity	constraints	can	also	take	the	form	of	”Unique”	or	
”Not Null” (the combination being required for a key). These
specifications could be added to VariableRepresentation or
ValueRepresentation to be inherited by substituted elements.
•	 Development	of	controlled	vocabularies	for	data	types	and	
output formats
•	 A	more	explicit	method	of	representing	multiple	distinct	
system missing values. In DDI3.2 this is now possible using a
ManagedMissingValuesRepresentation. This is still a significant
challenge when moving data from a package supporting
multiple missing values to one (e.g. R) which does not.
•	 A	method	for	explicitly	representing	scripts	stored	in	a	dataset.	
Currently scripts for specific data transformations can be stored
in d:GeneralInstruction. Scripts for other purposes or roles such
as analyses or visualization could use some structure. In the
future this may become part of a process model in DDI.
•	 A	facility	for	recording	colors	attached	to	either	variables	or	
sets of observations, including the color value and an associated
concept or category. With DDI3.2 Color assignments for a
code could be recorded in a r:UserAttributePair attached to its
associated l:Category. For numeric variables a color gradient
could be recorded by r:UserAttributePair elements attached to a
r:ManagedNumericRepresentation. A work-around for assigning
colors to individual values could use a structured r:Label of a
r:NumberRange.
•	 Facilities	for	a	variable	to	point	to	a	Boolean	variable	as	
its filter (missing indicator) and to a categorical variable to
indicate different types of missing. For a Boolean filter of a
numeric variable, a weight variable is equivalent to a filter
indicator, where a weight of 0 indicates missing and a weight
of 1 indicates valid. This is not technically correct for a string
variable and does not work for the categorical case. What would
be desirable is a reference to a variable for which a role could be
specified.

Future Work
A longer version of this article is planned for publication in the DDI
Alliance Working Paper series. The paper will focus additionally on

solutions which are developed in the DDI Moving Forward project
on the next generation DDI. The appendix will have an extensive
mapping table describing the metadata elements in each package
and DDI.

References
ALGENTA TECHNOLOGIES 2012. Colectica Reader - The Free DDI 3

Viewer - DDI Metadata and Survey Design Software.
AMIN, A., BARKOW, I., KRAMER, S., SCHILLER, D. & WILLIAMS, J. 2011.

Representing and Utilizing DDI in Relational Databases. DDI
Working Paper Series: DDI Alliance. (doi: http://dx.doi.org/10.3886/
DDIOtherTopics02).

CIRCLE SYSTEMS Stat/Transfer. (URL: http://www.stattransfer.com/).
DATA DOCUMENTATION INITIATIVE. 2013a. DDI RDF Vocabularies | DDI

- Data Documentation
 Initiative [Online]. Available: http://www.ddialliance.org/

Specification/RDF.
DATA DOCUMENTATION INITIATIVE. 2013b. DDI Tools | DDI - Data

Documentation Initiative [Online]. Available: http://www.ddialliance.
org/resources/tools.

DATA DOCUMENTATION INITIATIVE. 2013c. Future Plans
for DDI Development | DDI - Data Documentation
Initiative [Online]. Available: http://www.ddialliance.net/
ddi-moving-forward-process-summary.

DDI ALLIANCE EXPERT COMMITTEE. 2009. DDI 3.1 XML Schema
Documentation (2009-10-18) [Online]. Available: http://www.
ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/
FieldLevelDocumentation/.

DDI CONTROLLED VOCABULARIES WORKING GROUP DDI Controlled
Vocabularies - Overview Table. DDI Alliance. (URL: http://www.
ddialliance.org/Specification/DDI-CV/).

HOYLE, L., WACKEROW, J. & HOPT, O. 2010. DDI 3: Extracting Metadata
from the Data Analysis Workflow. In: VARDIGAN, M., EDWARDS, M. &
HOYLE, L. (eds.) DDI Working Paper Series -- Use Cases. DDI Alliance,
http://www.ddialliance.org/resources/publications/working/
usecases: Data Documentation Initiative Alliance. (doi: http://dx.doi.
org/10.3886/DDIUseCases04).

IBM IBM SPSS Statistics. (URL: http://www.spss.com).
R DEVELOPMENT CORE TEAM 2009. R: A language and environment for

statistical computing. In: COMPUTING, R. F. F. S. (ed.). Vienna, Austria.
(URL: http://www.R-project.org).

SAS INSTITUTE - JMP JMP Statistical Discovery Software. SAS Institute.
(URL: http://www.jmp.com/).

SAS INSTITUTE - SAS The SAS System. (URL: http://www.sas.com).
STATACORP Stata. (URL: http://www.stata.com/).
W3c. XML Schema Part 2: Datatypes Second Edition W3C

Recommendation 28 October 2004 (URL: http://www.w3.org/TR/
xmlschema-2/#built-in-primitive-datatypes)

Wikipedia. SQL -- Data Types (URL http://en.wikipedia.org/wiki/
SQL#Data_types)

Wikipedia. ISO 8601 (URL:http://en.wikipedia.org/wiki/ISO_8601)
WRIGHT, P. A. 2011. Eliminating Redundant Custom Formats. SAS

Global Forum 2011 SAS Institute. (URL: http://support.sas.com/
resources/papers/proceedings11/217-2011.pdf).

Appendices
Appendices and possible other related material may be found at
http://hdl.handle.net/1808/19900.
A PDF document containing the three appendices may also be
accessed directly at https://kuscholarworks.ku.edu/bitstream/
handle/1808/19900/DDIasaCommonFormatIassistQAppendices.
pdf.

22 IASSIST Quarterly 2015

IASSIST Quarterly

Notes
1 Larry Hoyle is a Senior Scientist at the Institute for Policy & Social

Research at the University of Kansas and can be reached by email:
LarryHoyle@ku.edu.

 Joachim Wackerow is a metadata expert at GESIS - Leibniz Institute
for the Social Sciences and can be reached at joachim.wackerow@
gesis.org.

