
Abstract
Growing amounts of available data and new
developments in data handling result in the need for
advanced solutions. Therefore, organizations providing
data have to focus more and more on technical and
design issues. In order to keep the effort and expense
low, data storage and data documentation must
go hand in hand. This paper aims to help decision-
makers by highlighting two promising approaches

- relational databases for data storage and the DDI
(Data Documentation Initiative) standard for data
documentation. Possible interactions between both
solutions are discussed, whereby the focus is on the
advantages and disadvantages of representing DDI
in its native XML format vs. the storage format of
relational databases. In addition, three use cases are
presented to provide further
clarity on design considerations
for DDI-based data systems: (1)
agencies with existing relational
database structures, (2) agencies
with homogeneous DDI input
and output, and (3) agencies
with mixed environments..

Keywords
Data Documentation, Data Storage, Compatibility, DDI,
Relational Data Base, SQL
.
Introduction
Data constitute a valuable, perhaps the most valuable,
commodity in scientific research. Therefore, the
potential for reusing generated data for future projects
is an important consideration in the conduct of

research (see Pienta 2010). But data can only be reused
if they can be sufficiently interpreted and understood,
and that requires that they be well documented (see
Gregory et al. 2009).

Data reuse is not the only reason for proper data
documentation in the social and behavioral sciences.
When contextual information for a given dataset
is captured effectively, new opportunities for
comparative research are enabled across multiple
datasets. International comparative research requires
harmonized data and a cross-national standardization
of data documentation. In Europe, the project “Data
without Boundaries” (DwB), funded by the 7th
Framework Program of the European Commission, is
developing a framework to facilitate research within

the member states of the European Union (http://
www.dwbproject.org). Furthermore, there is a growing
demand for merged datasets from different data
sources resulting from the improvement of statistical
methods and technical capabilities (see Lane 2010).
All these developments result in the fact that multiple
data providers are involved in the process of data
generation for scientific research. Nevertheless, even
if only data from one survey is needed, normally

Design Considerations
for DDI-Based Data
Systems
 by Alerk Amin1, Ingo Barkow2, Stefan Kramer3, David Schiller4,
and Jeremy Williams5

The main advantages of a rules-
based model is the certainty and lack
of ambiguity

IASSIST Quarterly 2015 7

IASSIST Quarterly

more than one organization is involved due to the fact that data
collection, data preparation and data dissemination are often
undertaken by different partners (or at least different departments).
These new developments mean that multiple data providers are
often involved in the process of data generation for scientific
research. And increasingly, even for single surveys, more than one
organization is involved due to the fact that data collection, data
preparation, and data dissemination are often done by different
partners (or at least by different departments), as shown in Figure 1.

To address all of these challenges, and to enable sound scientific
research in the future, a documentation standard for research data
is vital. The DDI6 metadata specification (see Vardigan et al. 2008)
offers a solution; many important data providers are already using
DDI, or are about to use it. The DDI Alliance7, which develops
the DDI specification and promotes its worldwide adoption and
implementation, is supported by an active community that steadily
works on improvements.

The DDI standard provides a means to represent metadata about data
collected in the social sciences, and potentially other disciplines (see
Block et al. 2011), in a meaningful and structured manner. It is therefore
expressed using XML as a framework. XML stands for eXtensible
Markup Language8. It offers rules for a human- and machine-readable
format for data exchange. XML schemas are employed to structure
metadata content in the form of DDI instances.

Essentially, DDI can represent metadata in the form
of XML files based on the DDI XML Schema9. The XML
files can be stored on a common file share, or can
be put into an XML database like (BaseX10 or eXist11
) to enable collaborative work with multiple users.
Another possibility is to represent DDI in relational
databases (RDBs). The table below describes
the basic organizational difference between an
XML hierarchy and a relational model. While XML
unfurls its content, like a tree structure, from one
top level down to the most detailed content, a
relational store models information in tables with
non-hierarchical contents. These tables are bound
together via defined keys (in the example below, see

“organization_scheme_id”).

It is obvious that a standard like DDI can only serve
the scientific community, and provide solutions for
the mentioned challenges, if it is actively used by

a sufficient number of stakeholders. In order to achieve this goal, the
DDI-based documentation must be easy to understand and easy to
integrate into existing data infrastructure. It also has to be compatible
with future developments in the area of data storage. Relational
databases are a widely used and flexible solution for data storage.
Bringing DDI together with the capability of relational database
systems will promote both data storage for the purpose of scientific
research and adoption of DDI as a standard.
This article is based on two related papers authored by Amin et al. in
2011 and 2012 and written with the software developer community
in mind. To complement these more technical papers on the usage of

DDI in relational databases, this paper is oriented
towards management in agencies using DDI
or considering its use. The paper discusses the
advantages and disadvantages of representing
DDI in relational databases as an alternative to
an XML structure. In addition, several short use
cases are provided to inform the task of decision-
making for DDI-based system design.

Relational Databases versus XML:
Pros and Cons
The idea of storing DDI instances in a relational
database, as opposed to an XML database, is
often a hot topic among developers. From the
perspective of DDI solely as a “storage” standard,
an XML database has certain advantages. But
when thinking of DDI as a transport format

between applications, the actual storage format for each application
should be the one that best meets that application’s needs. In
many cases, a relational database is the better option. The following
section of the paper demonstrates the advantages of using a
relational database.

Representing the DDI model within a relational database
The first reason to consider a relational database model for DDI arises
from an organizational point of view. Many agencies have been storing
primary data and associated metadata for time spans measured
in decades, and a very common storage method is the relational
database, as its tabular structure is ideal for storing rectangular data
resulting from data collection activities. Therefore, those agencies
have a high level of expertise and investment in using the relational
database model. Changing their present table-based metadata
standard (whatever that may be) to a DDI representation which is also

Figure 1: Multiple agencies play a role across the data pipeline.

Table 1: Comparison of XML and RDB structures.

8 IASSIST Quarterly 2015

IASSIST Quarterly

table-based should thus be intuitive to them. Using XML for storage,
on the other hand, might be problematic, as these agencies do not
have the experience or resources to convert the metadata and change
the surrounding tools to the new structure. XML may be known to
them, but mostly as an import or export format. They might therefore
be reluctant to utilize DDI in XML format for reasons of transformation
costs or because they may have to leave their area of expertise
or comfort.

In addition to organizational considerations, there are also structural
advantages to using a relational database. Agencies often represent
their microdata internally in the form of a relational database as
a central storing mechanism because it is ideal for processing
rectangular data (e.g., SPSS data files, ASCII data files) in tables and
can manage the file structures of multiple studies by input and
output processes. If the metadata are stored in the same database as
the microdata, the movement from metadata to data output works
seamlessly, as native database methods such as connecting tables by
referential integrity can be used. The metadata can be linked to the
associated research data. A user can therefore first search the metadata
and then move easily to the connected data. This model can even
be extended to create custom data extracts (like a variable shopping
basket), where an extract of the dataset, including the related
metadata as a kind of codebook, can be selected and downloaded, e.g.,
via a Web interface. In an XML-based DDI environment this can also be
done, but with much more effort, as two different structural models
have to be merged. In a worst case scenario, an external service has to
link between an XML metadata structure based on DDI and an ASCII
file containing the microdata.

Relational databases have existed on the market for decades, and
have led to the development of many tools for working with them.
If one extends the idea of combining metadata and microdata into
a relational database model, then the next step can be changing
the database model into an analytical one. Relational databases can
be enhanced to become analytical or multidimensional databases
(e.g., online analytical processing [OLAP] cubes12). With this model,
enhanced analytical or statistical methods from the area of Business
Intelligence (e.g., data mining, process mining) can be applied to the
data. These methods might lead to completely new research questions
and new knowledge. This change of model would be difficult to realize
in a purely XML-based environment.

A less complex example is storing more than one survey in a structure.
In a relational database, the tabular structure can be designed to
support multiple surveys in one structure by adding additional
administrative tables. In a DDI structure based on XML files, this is
difficult to represent; and it is difficult in an XML database, as the
structure is largely based on the original DDI XML schema, which
normally (as it is file-based) demands a separate XML file for each
survey. In an XML database structure each survey on its own has to
be represented as a separate XML database or at least as a separate
instance of an XML database (if the XML database supports instances).
The problem can be solved by adding additional programming
routines surrounding the XML structure to emulate referential integrity
by XML database linkage. Nevertheless, the relational database offers
these possibilities intrinsically or with much less effort.

A representation of metadata within a relational database can also be
independent of the DDI version and/or instance. Some agencies use
an internal structure for their metadata that is not based on DDI but
contains all the necessary information needed to exchange data with
other agencies. For them, DDI in its XML form can be used as an import

and export format. For example, ICPSR offers an “Export Study-level
metadata” (in DDI 2.1 or 3.1, as of Oct. 2011) function for studies in its
data archive13 in this manner. A possible advantage of this method
would be that the surrounding processes can always be adapted to
the desired or required DDI version(s), which is far less challenging
than updating native DDI XML instances to the appropriate version.
Nevertheless, a major drawback of relational databases importing
XML file structures is the possibility for information loss. If some nodes
within the XML instance have no representation within the database
structure, this content will simply be lost during the import process, or
the import will not work at all if there is a structural check disallowing
these kinds of partial imports.

Representing the DDI model in XML instances
Although the relational database contains a lot of additional features,
the “native” way to represent DDI content is to store DDI as an instance
specified by the XML schema. This leads to the logical advantage of
a direct representation of the content in the correct schema. A DDI
instance using the full set of DDI elements will be far superior to a
construct within a relational database, as not all functionalities of DDI
can be represented easily in the latter. Problems arise with a relational
database, as will be shown further below, in representing versioning
in DDI (see Edwards et al. 2009), or pointing to another agency by
using referential URNs. In native XML the solution can be quite easily
expressed, but in relational databases this is possible only with heavy
additional programming (e.g., incrementing versioning by surrounding
Web services or using analytical databases with slowly changing
dimensions to represent the time or version). However, most agencies
do not use DDI in its full specification, but only a small subset of
elements; here, the advantages of the XML approach may not weigh
heavily. Essentially, if an agency uses the full DDI specification, the
XML database storage implementation is superior as this is the best
possibility to express DDI as designed by the DDI Alliance.

Issues with DDI specification changes in relational databases and
in XML
A problem all implementations of DDI share is handling new
versions of the specification (e.g., DDI 3.1 to DDI 3.2). If a new
version of DDI is extended with new structures, or there are
changes in the structure itself, this causes significant problems
in implementation. In the case of the DDI-RDB, this means
constructing a new import and export mechanism for the new
version. Furthermore, it might lead to a change in the overall
database model to support both versions. In a worst case
scenario, the structures are not compatible anymore, leaving the
organization with two different databases or at least database
partitions for storing the information, which is a considerable
problem in data management.

But the DDI-XML method faces challenges with specification changes
as well. Either the DDI-XML structure has to be transformed, or there
have to be multiple versions of DDI-XML in the XML database. This
leads also to changes in the application logic of the associated tool.
If one chooses the simple solution from above and only changes
the nodes which are known to the agency, again this leads to the
inconsistency problems mentioned before.

A sizable advantage for the DDI-XML representation here is its
hierarchical structure. DDI-XML is capable of expressing complex
structures in an organized manner and can use built-in XML features
like inheritance or validation against the schema. A DDI-RDB has to
use additional program logic to emulate this behavior. In some cases,
inheritance can only be expressed by using complex join operations

IASSIST Quarterly 2015 9

IASSIST Quarterly

between tables or self-joins within a table, leading to a decrease in
speed while accessing the information. These performance issues can
be ameliorated by using advanced database optimization techniques
like partitioned view, partitioned tables, or managed code, but in the
end there is still a structural disadvantage.

Considering a hybrid RDB-XML database approach for DDI
Another way to keep the imported XML structure intact without
losing performance or without logical losses would be to use the
XML features of commercial databases. Some database systems,
such as Microsoft SQL Server 2008 R214 , Oracle 11g15, and IBM’s
DB2,16 have added support for managing XML natively within
the cell structure of their tables. This includes advanced features
like XML indexes, XML data type (thus XML will not be handled
as string, but recognized as XML), and XPath search expressions
within table cells. Furthermore, it is also possible to link from an
XML database like eXist to a relational database with similar results.

Using the hybrid approach, the advantages of relational databases
(e.g., multiple studies, high performance) can be combined with
the flexibility of XML databases and enable easier handling of
DDI between different systems. Currently, several agencies are
experimenting with this approach.

Use Cases for Handling DDI in Different
Database Structures
While the aforementioned papers (see Amin et al. 2011) focused
on the usage of DDI in relational databases and were targeted
more at the software developer community, this paper highlights
the management considerations needed to choose the right
infrastructure for different agencies. The following use cases
provide illustrations to that end.

Use Case 1 - Agency with existing relational database structure
In many cases, agencies focusing on DDI are not completely
new in this domain, but have engaged in data management
and curation for a long time and already have existing studies.
Therefore, because of the possibilities of handling large amounts of
data in a structured form, relational databases are quite common
in those agencies, and a lot of knowledge and familiarity with
relational databases already exists. Nevertheless, this might also be
the case with XML databases depending on the agency. Therefore,
the decision of which model to use (relational, XML, or hybrid)
largely depends on the established structure of a given agency.
If an agency uses only relational databases, the preferred choice
in most cases would be to stay in the same environment. This
means the people responsible for the database design have to
check which elements that already exist in their table structure
can be matched to DDI to create import and export mechanisms.
If, for example, an agency already has a table to store items for
their instruments, the agency needs to determine whether all
the necessary fields (or at least the mandatory ones from the DDI
element QuestionItem) are present. If not, it can check whether
these fields exist in other tables of the database model or can be
extracted from additional material which can then be loaded into
the database by import mechanisms.

If the agency also obtains datasets from third parties, this ingest
process becomes more complicated. Based on the elements the
other agency used, the database scheme has to be checked to
see if the table structure can be enhanced by using elements
from DDI which do not yet exist in the database before an import
can happen. These checks must occur, at a minimum, with the

elements that are mandated by the DDI schema. In the next step,
the tools using the relational database have to be adapted to use
the additional tables within the enhanced database structure. It
is, in most cases, not necessary for an agency to implement all the
elements of DDI into the relational database structure. DDI consists
of a multitude of elements which are not necessarily applicable for
all agencies.

In some instances, an existing application may have a structure
that is too far removed from the DDI model. For these applications,
incorporating the DDI model into the existing database may not be
a suitable option.

For these situations, the following may be better options:
•	 Creation	of	a	completely	new	relational	database	using	
established elements and DDI elements. The former metadata
can be imported by Extract-Transform-Load (ETL) processes. This
involves an automated work flow to export the data from the old
database, process it in a staging area, and finally move it into the
new structure.
•	 Creation	of	a	hybrid	database	using	the	old	database	for	
established elements and combining them with additional DDI
information from another database (this can also be XML instead
of a relational model). This option can make the programming
of the surrounding tools quite complex, as it utilizes multiple
paradigms and languages in tandem with each other.
•	 Starting	from	scratch	only	for	new	studies.	With	this	option,	
the agency decides to use a new database model (can be
relational or XML for DDI representation) and also develops new
tools for it. Older studies are still handled in the old model.

Use Case 2 – Agency with homogeneous DDI inputs and outputs
The appropriate use of native XML databases is beyond the scope
of this paper. It is worth mentioning, however, that there are many
cases that would warrant using a native XML database rather than
a relational database. One such use case is that of a system that
ingests a homogeneous instance of DDI, perhaps generated from
a software tool, and outputs the same, possibly for the purpose of
implementing search functionality or for long term preservation
of DDI in its original format. For the purpose of this example,
homogeneity is defined as using the same version of DDI.
Some organizations are able to achieve uniformity by mandating a
standard for metadata throughout the organization by instituting
common tools, practices, etc. If the same version of DDI is being
used throughout an organization (represented as XML), then a
native XML database offers reduced system complexity resulting in
lower conversion costs and higher output fidelity.

One necessary component of any relational database-driven DDI
application is mapping a given instance of DDI to a relational
structure. Implementing this step provides all of the benefits
mentioned elsewhere in this paper, but it does add complexity to
the architecture of a system. If DDI XML is also the output format,
which is likely, then the mapping would have to occur again, this
time from the relational structure to DDI XML.

By using a native XML database, the DDI XML ingested can
simply be stored and queried in its original format, bypassing
the mapping step altogether and reducing system complexity.
Reduced complexity means lower conversion costs, and often
means a lower probability for errors occurring, which will naturally

10 IASSIST Quarterly 2015

IASSIST Quarterly

increase output fidelity, or the probability that the XML input into
the system is the same as that which is provided as output.

These benefits can also be accomplished using a relational/
XML hybrid approach, and would likely be preferred due
to the increased flexibility of blending the relational and
hierarchical paradigms.

Use Case 3 – Agency with a mixed environment
In most situations, an application that uses DDI will not exist in
isolation. Using DDI promotes reuse and long-term preservation.
This will usually require coordination between multiple
applications, often residing at different agencies.

In a heterogeneous environment, the inputs and outputs for
a particular program are vitally important. As a standard, DDI
can help with this. Two applications or agencies can use DDI to
communicate metadata. For a limited scope, two applications can
use a single version of DDI. But for a larger system, being able to
support multiple versions of DDI becomes important.

When designing an application, there are three factors to consider
when thinking about interoperability: the inputs to the application,
the outputs from the application, and the logic of the application
itself (what the application does with the data internally). In most
cases, the application logic is the “value added” by the application/
agency, and is often the most important part of the system. The
needs of the application logic often dictate the other requirements
of the system.

When dealing with multiple sources of data, there can be multiple
formats or standards. Even for agencies that use DDI, there can
be different versions (DDI Lifecycle - “DDI 3” in the above graphic -
and/or different versions of DDI Codebook - “DDI 2” in the above
graphic). One option is to write an application layer that deals
with all of these different formats, but this is usually a poor option.
It involves multiple copies of the application logic to deal with
each format, and a new version of the application logic must be
written for each future version of DDI. And while this may help with
reducing the import complexity, it does not solve any problems
during export.

A better option (see Figure 2) is to use import modules to
transform the various incoming formats into a single format for
internal storage and processing. This allows for a much simpler
application logic, because it can be written to process a single
data structure that is appropriate for the logic. Additionally, new
formats can be dealt with by writing new imports, without having
to change the application logic. For exporting, transformation

modules can be used to convert the internal data to the
appropriate format.

Looking forward: DDI version 4
Whereas the DDI metadata specifications through version 2.1
have been expressed as Document Type Definitions (DTDs), and
starting with version 2.1 through version 3.2 as XML schema, the
forthcoming version 4 will be represented in OWL/RDF as well as
XML schema. Work on implementing the DDI metadata model
using Semantic Web standards had begun at a workshop in
September 2011 (http://www.dagstuhl.de/11372), with an early
focus on how best to relate Resource Description Framework
(RDF)-described datasets to other related resources and objects

(publications, geographies, organizations, people, etc.) in
the Semantic Web (see Kramer et al., 2012). In October 2012,
the DDI Alliance established the Moving Forward project to
create a model-based specification for DDI. The ongoing
work, and the structure of the DDI 4 model, are documented
in a wiki (see DDI Alliance, 2014). This development will
enable new methods to derive appropriate database
schemas for a particular subset of all items. In DDI ver. 4, there
will be “views” - a subset of the complete model (e.g., for a
particular codebook format). These views could form the
basis for the creation of a database schema.

Conclusion
The data deluge that the scientific community is
experiencing combined with new developments in data

handling result in the need for advanced solutions. Therefore,
organizations disseminating data have to focus more and
more on technical and design issues. In order to keep the effort
and expense low, data storage and data documentation have
to go hand in hand. A more flexible usage of DDI tailored to
relational databases could ease some of the challenges. Whereas
storing DDI in XML database provides certain advantages
for data documentation systems, the flexibility of a relational
database storage model can more appropriately answer some of
these challenges.

Decision-makers have to keep in mind that they need to enable
future-proof solutions which result in uncomplicated use of data
for scientific research. This paper has only given some first hints.
More research has to be done in the area of data documentation
and data storage. One promising topic of conversation could
possibly be found in a hybrid RDB-XML database approach for DDI.
A lively discussion on this and other topics would be timely and
well received. Therefore, the authors invite discussion of this paper
on the DDI users’ email discussion list17, and at future meetings of
the DDI and broader social science data communities.

References
Amin, A., Barkow, I., Kramer, S., Schiller, D., Williams, J. (2011).

Representing and Utilizing DDI in Relational Databases (DDI Working
Paper Series). http://dx.doi.org/10.3886/DDIOtherTopics02

Block, W.C., Andersen, C.B., Bontempo, D.E., Gregory, A., Howald, S.,
Kieweg, D., Radler, B.T. (2011). Documenting a Wider Variety of Data
Using the Data Documentation Initiative 3.1, Longitudinal Best
Practice, No. 1 (DDI Working Paper Series). http://dx.doi.org/10.3886/
Longitudinal01

DDI Alliance (2014). DDI Moving Forward Project: Structure of DDI
4 and the process to create it. http://dditools.atlassian.net/wiki/
display/DDI4/Structure+of+DDI+4

Figure 2: Importing and exporting metadata in DDI format

IASSIST Quarterly 2015 11

IASSIST Quarterly

Edwards, M., Eisenhauer, J., Fry, J., Heus, P., Kolsrud, K., Moschner M.,
Nakao R., Thomas, W., (2009). Versioning and Publication, Best
Practice, No. 8 (DDI Working Paper Series). http://dx.doi.org/10.3886/
DDIBestPractices08

Gregory, A., Heus, P., Ryssevik, J. (2009). Metadata (RatSWD Working
Paper 57).

Kramer, S., Leahey, A., Southall, H., Vompras, J., Wackerow, J. (2012).
Using RDF to Describe and Link Social Science Data to Related
Resources on the Web: Leveraging the Data Documentation
Initiative (DDI) Model (DDI Working Paper Series). http://dx.doi.
org/10.3886/DDISemanticWeb01

Lane, J. (2010). Linking administrative and survey data, in: Marsden P.,
Wright J., Handbook of Survey Research, 659-680.

Pienta, A.M., Alter, G.C., Lyle, J.A. (2010). The Enduring Value of Social
Science Research: The Use and Reuse of Primary Research Data.
http://deepblue.lib.umich.edu/handle/2027.42/78307

Vardigan, M., Heus, P., Thomas, W. (2008) Data Documentation Initiative:
Toward a Standard for the Social Sciences, in: The International
Journal of Digital Curation, Issue 1, Volume 3, 107-113.

Notes
1. Alerk Amin, RAND Cooperation, www.rand.org
2. Ingo Barkow, University for Applied Sciences Eastern Switzerland

(HTW Chur), Switzerland; contact: ingo.barkow@htwchur.ch
3. Stefan Kramer, American University, Washington, DC
4. David Schiller, Research Data Centre (FDZ) of the German Federal

Employment Agency (BA) at the Institute for Employment Research
(IAB)

5. Jeremy Williams, Cornell Institute for Social and Economic Research
6. Data Documentation Initiative (http://www.ddialliance.org/)
7. http://www.ddialliance.org/alliance
8. http://www.w3.org/XML/
9. For more information on DDI see http://www.ddialliance.org/

resources
10. http://basex.org/
11. http://exist.sourceforge.net/
12. http://www.mendeley.com/catalog/providing-olap-online-

analytical-processing-useranalysts-it-mandate/
13. http://www.icpsr.umich.edu/icpsrweb/ICPSR/
14. http://msdn.microsoft.com/en-us/library/ms189887.aspx
15. http://www.oracle.com/technetwork/database/features/xmldb/

index.html
16. http://www-01.ibm.com/software/data/db2/xml
17. http://www.ddialliance.org/community/listserv

